Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giới hạn phân bố dẫn đến các ngách sinh thái hẹp hơn và nguy cơ tuyệt chủng cao hơn ở cá nước ngọt Úc
Tóm tắt
Các biến đổi môi trường do con người gây ra đang gia tăng tình trạng mất đa dạng sinh học. Việc xác định các đặc điểm sinh học nào làm tăng nguy cơ tuyệt chủng là rất quan trọng để thông báo cho việc bảo tồn chủ động. Trong khi các loài có phân bố địa lý hạn chế hoặc ít về số lượng thường dễ bị tổn thương hơn, thì sự chuyên môn sinh thái cũng có thể làm tăng nguy cơ tuyệt chủng, đặc biệt là khi liên quan đến sự hiếm có. Chúng tôi tiến hành nghiên cứu liệu cá nước ngọt đặc hữu của một khu vực có yêu cầu chế độ ăn uống và môi trường sống chuyên môn hơn so với các loài họ hàng gần phân bố rộng rãi hơn hay không. Chúng tôi sử dụng thông tin này để đánh giá nguy cơ tuyệt chủng. Sử dụng các cặp loài họ hàng gần rộng phân bố và đặc hữu từ khu vực Kimberley ở tây-bắc Úc, chúng tôi nghiên cứu xem có sự thay đổi chế độ ăn theo tuổi sinh lý ở 13 loài và nếu một số trong những đơn vị dinh dưỡng theo thế hệ (OTU) này có ngách ăn uống hẹp. Sử dụng các biện pháp định tính về môi trường sống và dữ liệu có/không có mặt, chúng tôi cũng đánh giá sự chuyên môn về môi trường sống ở 32 loài. Tổng thể, các loài có phân bố hạn chế có ngách sinh thái hẹp hơn. Sự thay đổi chế độ ăn theo thế hệ tồn tại ở 12 trong số 13 loài và các loài phân bố hạn chế thì chuyên môn hơn cho một số hoặc tất cả các OTU của chúng so với các loài họ hàng rộng phân bố. Các loài đặc hữu có mức độ biến động cao hơn trong việc sử dụng môi trường sống so với các loài họ hàng rộng phân bố, cho thấy chúng có yêu cầu về môi trường sống chuyên môn hơn. Do sự chuyên môn liên quan đến nguy cơ tuyệt chủng, ngách hẹp của các loài cá nước ngọt đặc hữu có phân bố hạn chế khiến chúng dễ bị tuyệt chủng hơn so với những loài phổ cả. Vì nhiều loài đặc hữu từ vùng Kimberley có phân bố hạn chế và/hoặc số lượng thấp, chúng có thể có nguy cơ tuyệt chủng gia tăng. Bằng cách xác định loài đặc hữu nào có ngách sinh thái hẹp, nghiên cứu của chúng tôi cung cấp thông tin cần thiết để nhắm mục tiêu các nỗ lực bảo tồn chủ động.
Từ khóa
#biodiversity #extinction risk #freshwater fishes #ecological specialization #conservationTài liệu tham khảo
Ahlbeck I, Hansson S, Hjerne O (2012) Evaluating fish diet analysis methods by individual-based modelling. Can J Fish Aquat Sci 69:1184–1201
Australian Government (2015) Our north, our future: white paper on developing northern Australia. Dep Prim Minist and Cabinet Canberra
Beck J, Kitching IJ (2007) Correlates of range size and dispersal ability: a comparative analysis of sphingid moths from the Indo-Australian tropics. Glob Ecol Biogeogr 16:341–349
Berkström C, Jones G, McCormick M, Srinivasan M (2012) Ecological versatility and its importance for the distribution and abundance of coral reef wrasses. Mar Ecol Prog Ser 461:151–163
Blanchette ML, Davis AM, Jardine TD, Pearson RG (2013) Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshwater Sci 33:142–158
Bonin MC (2012) Specializing on vulnerable habitat: acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss. Coral Reefs 31:287–297
Bonte D, Baert L, Lens L, Maelfait J-P (2004) Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. Ecography 27:343–349
Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W (2012) Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients: plant niche breadth and ecological characteristics. J Biogeogr 39:204–214
Boyles JG, Storm JJ (2007) The perils of picky eating: dietary breadth is related to extinction risk in insectivorous bats. PLoS ONE 2:e672
Brändle M, Stadler J, Klotz S, Brandl R (2003) Distributional range size of weedy plant species is correlated to germination patterns. Ecology 84:136–144
Brashares JS (2003) Ecological, behavioral, and life-history correlates of mammal extinctions in West Africa. Conserv Biol 17:733–743
Brooker RM, Munday PL, Brandl SJ, Jones GP (2014) Local extinction of a coral reef fish explained by inflexible prey choice. Coral Reefs 33:891–896
Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61
Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279
Caley MJ, Munday PL (2003) Growth trades off with habitat specialization. Proc R Soc Lond Series B Biol Sci 270:S175–S177
Calosi P, Bilton DT, Spicer JI, Votier SC, Atfield A (2010) What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J Anim Ecol 79:194–204
Cardillo M, Mace GM, Gittleman JL, Purvis A (2006) Latent extinction risk and the future battlegrounds of mammal conservation. Proc Natl Acad Sci USA 103:4157–4161
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253
Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228
Davis AM, Betancur-R R (2017) Widespread ecomorphological convergence in multiple fish families spanning the marine–freshwater interface. Proc R Soc B Biol Sci 284:20170565
Davis AM, Pearson RG, Pusey BJ, Perna C, Morgan DL, Burrows D (2011) Trophic ecology of northern Australia’s terapontids: ontogenetic dietary shifts and feeding classification. J Fish Biol 78:265–286
Davis AM, Pusey BJ, Pearson RG (2012) Contrasting intraspecific dietary shifts in two terapontid assemblages from Australia’s wet-dry tropics: contrasting size-related diet habits in terapontids. Ecol Freshw Fish 21:42–56
Davis AM, Pusey BJ, Thorburn DC, Dowe JL, Morgan DL, Burrows D (2010) Riparian contributions to the diet of terapontid grunters (Pisces: Terapontidae) in wet-dry tropical rivers. J Fish Biol 76:862–879
Davis AM, Unmack PJ, Pusey BJ, Pearson RG, Morgan DL (2013) Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae). BMC Evol Biol 13:53
Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Venail P, Villéger S, Mouquet N (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25
Ebner BC, Thuesen PA, Larson H, Keith P (2011) A review of distribution, field observations and precautionary conservation requirements for sicydiine gobies in Australia. Cybium 35:397–414
Entwisle TJ, Sonneman JA, Lewis SH (1997) Freshwater algae in Australia : a guide to conspicuous gener St and Assoc Syd
Fisher DO, Blomberg SP, Owens IPF (2003) Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc R Soc B Biol Sci 270:1801–1808
Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233
Gaston KJ, Blackburn TM (1996) Conservation implications of geographic range size-body size relationships. Conserv Biol 10:638–646
Gooderham J, Tsyrlin E (2002) The Waterbug book: a guide to the freshwater macroinvertebrates of temperate Australia. CSIRO Publishing, Collingwood
Harcourt AH, Coppeto SA, Parks SA (2002) Rarity, specialization and extinction in primates. J Biogeogr 29:445–456
Hawking JH, Smith FJ (1997) Colour guide to invertebrates of Australian inland waters. Co-op Res Cent for Freshw Ecol Albury
Heino J, Soininen J (2006) Regional occupancy in unicellular eukaryotes: a reflection of niche breadth, habitat availability or size-related dispersal capacity? Freshw Biol 51:672–685
Hobbs JA, Jones GP, Munday PL (2010) Rarity and extinction risk in coral reef angelfishes on isolated islands: interrelationships among abundance, geographic range size and specialisation. Coral Reefs 29:1–11
Hourigan TF, Reese ES (1987) Mid-ocean isolation and the evolution of Hawaiian reef fishes. Trends Ecol Evol 2:187–191
Huey JA, Cook BD, Unmack PJ, Hughes JM (2014) Broadscale phylogeographic structure of five freshwater fishes across the Australian monsoonal tropics. Freshwater Sci 33:273–287
Hughes JB (2000) The scale of resource specialization and the distribution and abundance of lycaenid butterflies. Oecologia 123:375–383
Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77
Hyslop EJ (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17:411–429
Jackson DA, Harvey HH (1997) Qualitative and quantitative sampling of lake fish communities. Can J Fish Aquat Sci 54:2807–2813
Jardine TD, Pusey BJ, Hamilton SK, Pettit NE, Davies PM, Douglas MM, Sinnamon V, Halliday IA, Bunn SE (2012) Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river. Oecologia 168:829–838
Johnson CN, Delean S, Balmford A (2002) Phylogeny and the selectivity of extinction in Australian marsupials. Anim Conserv 5:135–142
Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D (2006) Spatial segregation of specialists and generalists in bird communities. Ecol Lett 9:1237–1244
King AJ (2004) Ontogenetic patterns of habitat use by fishes within the main channel of an Australian floodplain river. J Fish Biol 65:1582–1603
Koehn JD, Kennard MJ (2013) Habitats. In: P. Humphries, K. Walker (eds) Ecology of Australian freshwater fishes, CSIRO Publishing, Collingwood, pp 25–48
Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236
Krasnov BR, Mouillot D, Khokhlova IS, Shenbrot GI, Poulin R (2008) Scale-invariance of niche breadth in fleas parasitic on small mammals. Ecography 31:630–635
Lappalainen J, Soininen J (2006) Latitudinal gradients in niche breadth and position—regional patterns in freshwater fish. Naturwissenschaften 93:246–250
Le Feuvre MC, Dempster T, Shelley JJ, Swearer SE (2016) Macroecological relationships reveal conservation hotspots and extinction-prone species in Australia’s freshwater fishes. Glob Ecol Biogeogr 25:176–186
Le Feuvre MC (2017) Triple jeopardy in the tropics: assessing extinction risk in Australia’s freshwater biodiversity hotspot. Diss Univ Melb
Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton
Luna B, Pérez B, Torres I, Moreno JM (2012) Effects of incubation temperature on seed germination of mediterranean plants with different geographical distribution ranges. Folia Geobot 47:17–27
Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akçakaya HR, Leader-Williams N, Milner-Gulland E, j. & Stuart, S.N. (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442
Marchant R (1982) Seasonal variations in the macroinvertebrate fauna of billabongs along Magela Creek, Northern Territory. Mar Freshw Res 33:329–342
McCormack JE, Zellmer AJ, Knowles LL (2010) Does niche divergence accompany allopatric divergence in aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64:1231–1244
McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 1:495–516
Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Change Biol 10:1642–1647
Muñoz AA, Ojeda FP (1998) Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114:563–573
Passy SI (2012) A hierarchical theory of macroecology. Ecol Lett 15:923–934
Pepper M, Keogh JS (2014) Biogeography of the Kimberley, Western Australia: a review of landscape evolution and biotic response in an ancient refugium. J Biogeogr 41:1443–1455
Petheram C, Gallant J, Wilson P, Stone P, Eades G, Rogers L, Read A, Tickell S, Commander P, Moon A, McFarlane D, Marvanek S (2014) Northern rivers and dams: a preliminary assessment of surface water storage potential for northern Australia. CSIRO, Australia
Pritt JJ, Frimpong EA (2010) Quantitative determination of rarity of freshwater fishes and implications for imperiled-species designations: determining rarity for imperiled species. Conserv Biol 24:1249–1258
Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc b: Biol Sci 267:1947–1952
Pusey B, Kennard M, Arthington A (2004) Freshwater fishes of North-Eastern Australia. CSIRO Publishing, Collingwood
Pusey BJ, Arthington AH, Read MG (1995) Species richness and spatial variation in fish assemblage structure in two rivers of the wet tropics of northern Queensland, Australia. Environ Biol Fishes 42:181–199
Pusey BJ, Arthington AH, Stewart-Koster B, Kennard MJ, Read MG (2010) Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australian river. J Fish Biol 77:731–753
Pyron M (1999) Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. J Biogeogr 26:549–558
Reed RN, Shine R (2002) Lying in wait for extinction: ecological correlates of conservation status among australian elapid snakes. Conserv Biol 16:451–461
Reif J, Hořák D, Sedláček O, Riegert J, Pešata M, Hrázský Z, Janeček Š, Storch D (2006) Unusual abundance–range size relationship in an Afromontane bird community: the effect of geographical isolation? J Biogeogr 33:1959–1968
Reynolds JD, Webb TJ, Hawkins LA (2005) Life history and ecological correlates of extinction risk in European freshwater fishes. Can J Fish Aquat Sci 62:854–862
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight MW, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, Silva ND, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vié J-C, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230
Shelley JJ, Delaval A, Le Feuvre MC (2017) A revision of the grunter genus Syncomistes (Teleostei, Terapontidae, Syncomistes) with descriptions of seven new species from the Kimberley region, northwestern Australia. Zootaxa 4367:1–103
Shelley JJ, Delaval A, Le Feuvre MC, Dempster T, Raadik TA, Swearer SE (2020a) Revision of the genus Hannia (Teleostei, Terapontidae), with description of a new species, Hannia wintoni, from the Kimberley, Western Australia. Zootaxa 4869:562–586
Shelley JJ, Dempster T, Le Feuvre MC, Unmack PJ, Laffan S, Swearer SE (2019a) A revision of the bioregionalisation of freshwater fish communities in the Australian monsoonal tropics. Ecol Evol 9:4568–4588. https://doi.org/10.1002/ece3.5059
Shelley JJ, Morgan DL, Hammer MP, Le Feuvre MC, Moore GI, Gomon MF, Allen MG, Saunders T (2018a) A field guide to the freshwater fishes of the Kimberley. Murdoch University Publishing Team, Perth
Shelley JJ, Swearer SE, Adams M, Dempster T, Le Feuvre MC, Hammer MP, Unmack PJ (2018b) Cryptic biodiversity in the freshwater fishes of the Kimberley endemism hotspot, northwestern Australia. Mol Phylogenet Evol 127:843–858
Shelley JJ, Swearer SE, Dempster T, Adams M, Le Feuvre MC, Hammer MP, Unmack PJ (2020b) Plio-Pleistocene sea-level changes drive speciation of freshwater fishes in north-western Australia. J Biogeogr 47:1727–1738. https://doi.org/10.1111/jbi.13856
Shelley JJ, Unmack PJ, Dempster T, Le Feuvre MC, Swearer SE (2019b) The Kimberley, north-western Australia, as a cradle of evolution and endemic biodiversity: an example using grunters (Terapontidae). J Biogeogr 46(11):2420–2432. https://doi.org/10.1111/jbi.13682
Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114
Stein JL, Stein JA, Nix HA (2002) Spatial analysis of anthropogenic river disturbance at regional and continental scales: identifying the wild rivers of Australia. Landsc Urban Plan 60:1–25
Stoner AW, Livingston RJ (1984) Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia 1984:174–187
Symonds MRE, Johnson CN (2006) Range size-abundance relationships in Australian passerines. Glob Ecol Biogeogr 15:143–152
Tebbett SB, Goatley CHR, Bellwood DR (2017) Fine sediments suppress detritivory on coral reefs. Mar Pollut Bull 114:934–940
Thorburn DC, Gill H, Morgan DL (2014) Predator and prey interactions of fishes of a tropical Western Australia river revealed by dietary and stable isotope analyses. J R Soc West Aust 97:363–387
Unmack PJ, Allen GR, Johnson JB (2013) Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Mol Phylogenet Evol 67:15–27
Unmack PJ, Dowling TE (2010) Biogeography of the genus Craterocephalus (Teleostei: Atherinidae) in Australia. Mol Phylogenet Evol 55:968–984
Wagner CE, McIntyre PB, Buels KS, Gilbert DM, Michel E (2009) Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct Ecol 23:1122–1131
Wilson SK, Burgess SC, Cheal AJ, Emslie M, Fisher R, Miller I, Polunin NVC, Sweatman HPA (2008) Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J Anim Ecol 77:220–228
Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manage 21:203–217
Youssef S, Baumel A, Véla E, Juin M, Dumas E, Affre L, Tatoni T (2011) Factors underlying the narrow distribution of the Mediterranean annual plant Arenaria provincialis (Caryophyllaceae). Folia Geobot 46:327–350
Yu J, Dobson FS (2000) Seven forms of rarity in mammals. J Biogeogr 27:131–139
