Randomized pilot study and qualitative evaluation of a clinical decision support system for brain tumour diagnosis based on SV 1H MRS: Evaluation as an additional information procedure for novice radiologists

Computers in Biology and Medicine - Tập 45 - Trang 26-33 - 2014
Carlos Sáez1, Luis Martí-Bonmatí2,3, Ángel Alberich-Bayarri2, Montserrat Robles1, Juan M. García-Gómez1
1Grupo de Informática Biomédica (IBIME), Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València Camino de Vera s/n, 46022 Valéncia, Spain
2Department of Radiology, Hospital Quirón Valencia, Valencia, Spain
3Radiology, Department of Medicine, Universidad de Valencia, Spain

Tài liệu tham khảo

The eTUMOUR Consortium. eTumour, Web accessible MR decision support system for brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data. VI Framework Programme, EC, Tech Rep FP6-2002-LSH-503094. Howe, 2003, 1H MR spectroscopy tumours and masses, NMR Biomed., 16, 123, 10.1002/nbm.822 Galanaud, 2006, Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy, Magn. Reson Med., 55, 1236, 10.1002/mrm.20886 Tate, 2006, Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra, NMR Biomed., 19, 411, 10.1002/nbm.1016 García-Gómez, 2008, The effect of combining two echo times in automatic brain tumor classification by MRS, NMR Biomed., 21, 1112, 10.1002/nbm.1288 García-Gómez, 2009, Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy, MAGMA, 22, 5, 10.1007/s10334-008-0146-y Fuster-García, 2011, Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra, Magn. Reson. Mater. Phys. Biol. Med., 24, 35, 10.1007/s10334-010-0241-8 C. Sáez, J.M. García-Gómez, J. Vicente, S. Tortajada, E. Fuster, M. Esparza, A. Navarro, M. Robles B.T. Curiam, Decision support system for brain tumour diagnosis, European Society for Magnetic Resonance in Medicine and Biology Congress (ESMRMB 2009), EPOS Posters/Paper Posters/Info-RESO:538 (2009). B. Celda, J.G. Cano, M. Martinez-Bisbal, B. Martinez-Granados, eTUMOUR-partners, Clinical evaluation of a fully automated Computer Aid Decision System (CADS) for brain tumour supported diagnosis, ISMRM 2009 Congress (2009). Julià-Sapé, 2012, Prospective diagnostic performance evaluation of single-voxel 1H MRS for typing and grading of brain tumours, NMR Biomed., 25, 661, 10.1002/nbm.1782 Magnetic Resonance User Interface. Avialable from: 〈http://www.mrui.uab.es/mrui/〉 (accessed 22.07.13.). Sáez, 2011, A generic and extensible automatic classification framework applied to brain tumour diagnosis in HealthAgents, Knowl. Eng. Rev., 26, 283, 10.1017/S0269888911000129 Louis, 2007, The 2007 WHO classifcation of tumours of the central nervous system, Acta Neuropathol., 114, 97, 10.1007/s00401-007-0243-4 Davis, 1989, Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Q., 13, 319, 10.2307/249008 2006 Hunt, 1998, Effects of computer-based clinical decision support systems on physician performance and patient outcomes: a systematic review, JAMA, 280, 1339, 10.1001/jama.280.15.1339 Garg, 2005, Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review, JAMA, 293, 1223, 10.1001/jama.293.10.1223 González-Vélez, 2009, Health agents: distributed multi-agent brain tumor diagnosis and prognosis, Appl. Intell., 30, 191, 10.1007/s10489-007-0085-8 Horská, 2010, Imaging of brain tumors: MR spectroscopy and metabolic imaging, Neuroimaging Clin N. Am., 20, 293, 10.1016/j.nic.2010.04.003 Sáez, 2008, A generic decision support system featuring an assembled view of predictive models for magnetic resonance and clinical data Vicente, 2012, Curiam BT kids, a Clinical DSS for pediatric brain tumour diagnosis, Eur. Soc. Magn. Reson. Med. Biol., Lisb, Port., 25 Tortajada, 2009, Prediction of postpartum depression using multilayer perceptrons and pruning, Methods Inf. Med., 48, 291, 10.3414/ME0562 Agresti, 1998, Approximate is better than “Exact” for interval estimation of binomial proportions, Am. Stat., 52, 119 C. Sáez, J.M. García-Gómez, Á. Alberich-Bayarri, M.A. Edo, M. Vañó, A. Català-Gregori, C. Barber, C. Poyatos, E. Mollá, L.Martí-Bonmatí, M. Robles, Clinical validation of the added value of a clinical decision support system for brain tumour diagnosis based on SV 1H MRS: randomized controlled trial of effectiveness and qualitative evaluation. Short oral communication presented at the 24th International Conference of the European Federation for Medical Informatics. Pisa, Italy (August, 2012). Fawcett, 2006, An introduction to ROC analysis, Pattern Recognit. Lett., 27, 861, 10.1016/j.patrec.2005.10.010 Sokolova, 2009, A systematic analysis of performance measures for classification tasks, Inf. Process. Manag., 45, 427, 10.1016/j.ipm.2009.03.002