Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chữ ký dựa trên mạng nơ-ron ngẫu nhiên cho phân loại kết cấu màu
Tóm tắt
Phân tích kết cấu màu là một chủ đề quan trọng trong nghiên cứu thị giác máy tính. Bài báo này giới thiệu một phương pháp phân tích kết cấu màu sáng tạo và mạnh mẽ dựa trên mạng nơ-ron ngẫu nhiên. Cách tiếp cận này sử dụng trọng số của mạng nơ-ron như các thuộc tính cho một vector đặc trưng màu sắc. Các thí nghiệm đã được thực hiện trên ba bộ dữ liệu chuẩn nổi tiếng (Vistex, USPtex và Outex) và hai phiên bản xoay của các bộ dữ liệu này (Vistex và Outex). Kết quả thu được hứa hẹn, vượt qua độ chính xác của hầu hết các phương pháp so sánh. Thành công này cho phép chúng tôi khẳng định rằng cách tiếp cận được đề xuất là một công cụ quý giá để được đưa vào lĩnh vực phân tích kết cấu màu.
Từ khóa
#Phân tích kết cấu màu #mạng nơ-ron #phân loại màu sắc #học máy #thị giác máy tính.Tài liệu tham khảo
Al-Kadi, O. S. (2010). Texture measures combination for improved meningioma classification of histopathological images. Pattern Recognition, 43(6), 2043–2053.
Anamandra, S. H., & Chandrasekaran, V. (2016). COLOR CHILD: A novel color image local descriptor for texture classification and segmentation. Pattern Analysis and Applications, 19(3), 821–837.
Aptoula, E. (2014). Remote sensing image retrieval with global morphological texture descriptors. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 3023–3034.
Backes, A. R., Casanova, D., & Bruno, O. M. (2012). Color texture analysis based on fractal descriptors. Pattern Recognition, 45(5), 1984–1992. http://scg.ifsc.usp.br/dataset/USPtex.php.
Backes, A. R., Casanova, D., & Bruno, O. M. (2013). Texture analysis and classification: A complex network-based approach. Information Sciences, 219, 168–180.
Batard, T., Berthier, M., & Saint-Jean, C. (2010). Clifford-Fourier transform for color image processing (pp. 135–162). London: Springer.
Bianconi, F., Fernandez, A., Gonzalez, E., Caride, D., & Calvino, A. (2009). Rotation-invariant colour texture classification through multilayer CCR. Pattern Recognition Letters, 30(8), 765–773.
Calvetti, D., Morigi, S., Reichel, L., & Sgallari, F. (2000). Tikhonov regularization and the L-curve for large discrete ill-posed problems. Journal of Computational and Applied Mathematics, 123(1), 423–446.
Chowdhury, A., Kautz, E., Yener, B., & Lewis, D. (2016). Image driven machine learning methods for microstructure recognition. Computational Materials Science, 123, 176–187.
da Silva, N. R., da Silva Oliveira, M. W., de Almeida Filho, H. A., Pinheiro, L. F. S., Rossatto, D. R., Kolb, R. M., et al. (2016). Leaf epidermis images for robust identification of plants. Scientific Reports, 6(25), 994.
Everitt, B. S., & Dunn, G. (2001). Applied multivariate analysis (2nd ed.). London: Arnold.
Fernández, A., Álvarez, M. X., & Bianconi, F. (2013). Texture description through histograms of equivalent patterns. Journal of Mathematical Imaging and Vision, 45(1), 76–102.
Florindo, J. B., Sikora, M. S., Pereira, E. C., & Bruno, O. M. (2013). Characterization of nanostructured material images using fractal descriptors. Physica A-Statistical Mechanics and its Applications, 392(7), 1694–1701.
Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). San Diego, CA: Academic Press.
Hoang, M. A., Geusebroek, J. M., & Smeulders, A. W. M. (2005). Color texture measurement and segmentation. Signal Processing, 85(2), 265–275.
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.
Khan, F. S., Anwer, R. M., van de Weijer, J., Felsberg, M., & Laaksonen, J. (2015). Compact color-texture description for texture classification. Pattern Recognition Letters, 51, 16–22.
Lehmer, D. H. (1951). Mathematical methods in large scale computing units. Annals Comp Laboratory Harvard University, 26, 141–146.
Li, X. Z., Williams, S., & Bottema, M. J. (2014). Texture and region dependent breast cancer risk assessment from screening mammograms. Pattern Recognition Letters, 36, 117–124.
Liu, G. H., Li, Z., Zhang, L., & Xu, Y. (2011). Image retrieval based on micro-structure descriptor. Pattern Recognition, 44(9), 2123–2133.
Losson, O., Porebski, A., Vandenbroucke, N., & Macaire, L. (2013). Color texture analysis using CFA chromatic co-occurrence matrices. Computer Vision and Image Understanding, 117(7), 747–763.
Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837–842.
Masoudi, B. (2016). Classification of color texture images based on modified WLD. International Journal of Multimedia Information Retrieval, 5(2), 117–124.
Mennesson, J., Saint-Jean, C., & Mascarilla, L. (2014). Color Fourier–Mellin descriptors for image recognition. Pattern Recognition Letters, 40, 27–35.
Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., & Huovinen, S. (2002a). Outex: New framework for empirical evaluation of texture analysis algorithms. In: International conference on pattern recognition, pp 701–706
Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002b). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions Pattern on Analysis and Machine Intelligence, 24(7), 971–987.
Palm, C. (2004). Color texture classification by integrative co-occurrence matrices. Pattern Recognition, 37(5), 965–976.
Pao, Y. H., & Takefuji, Y. (1992). Functional-link net computing: Theory, system architecture, and functionalities. IEEE Computer Journal, 25(5), 76–79.
Pao, Y. H., Park, G. H., & Sobajic, D. J. (1994). Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 6(2), 163–180.
Park, S. K., & Miller, K. W. (1988). Random number generators: Good ones are hard to find. Communications of the ACM, 31(10), 1192–1201.
Paschos, G., & Petrou, M. (2003). Histogram ratio features for color texture classification. Pattern Recognition Letters, 24(1–3), 309–314.
Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., & Campbell, L. (1995). Vision texture database. Media Laboratory. Cambridge: MIT. http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
Porebski, A., Vandenbroucke, N., & Macaire, L. (2008). Haralick feature extraction from LBP images for color texture classification. In: Image processing theory, tools and applications, pp 1–8
Porebski, A., Vandenbroucke, N., & Macaire, L. (2013). Supervised texture classification: Color space or texture feature selection? Pattern Analysis and Applications, 16(1), 1–18.
Sá Junior, J. J. M., & Backes, A. R. (2016). ELM based signature for texture classification. Pattern Recognition, 51, 395–401.
Sá Junior, J. J. M., Backes, A. R., Rossatto, D. R., Kolb, R. M., & Bruno, O. M. (2011). Measuring and analyzing color and texture information in anatomical leaf cross sections: An approach using computer vision to aid plant species identification. Botany, 89(7), 467–479.
Sá Junior, J. J. M., Backes, A. R., & Cortez, P. C. (2014). Color texture classification using shortest paths in graphs. IEEE Transactions on Image Processing, 23(9), 3751–3761.
Scharcanski, J. (2005). Stochastic texture analysis for monitoring stochastic processes in industry. Pattern Recognition Letters, 26(11), 1701–1709.
Schmidt, WF., Kraaijveld, MA., & Duin, RPW. (1992). Feedforward neural networks with random weights. In: Proceedings, 11th IAPR international conference on pattern recognition (Vol.II.) Conference B: Pattern recognition methodology and systems, pp 1–4
Sima, H., & Guo, P. (2014). Texture superpixels merging by color-texture histograms for color image segmentation. KSII Transactions on Internet and Information Systems, 8(7), 2400–2419.
Tang, Z., Su, Y., Er, M. J., Qi, F., Zhang, L., & Zhou, J. (2015). A local binary pattern based texture descriptors for classification of tea leaves. Neurocomputing, 168, 1011–1023.