Randomized LU decomposition

Applied and Computational Harmonic Analysis - Tập 44 - Trang 246-272 - 2018
Gil Shabat1, Yaniv Shmueli2, Yariv Aizenbud3, Amir Averbuch2
1School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
2School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
3Department of Applied Mathematics, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Tài liệu tham khảo

Stewart, 2000, The decompositional approach to matrix computation, Comput. Sci. Eng., 2, 50, 10.1109/5992.814658 Elad, 2006, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15, 3736, 10.1109/TIP.2006.881969 Mazumder, 2010, Spectral regularization algorithms for learning large incomplete matrices, J. Mach. Learn. Res., 99, 2287 Koren, 2009, Matrix factorization techniques for recommender systems, Computer, 42, 30, 10.1109/MC.2009.263 Wolf, 2003, Learning over sets using kernel principal angles, J. Mach. Learn. Res., 4, 913 Coifman, 2006, Diffusion maps, Appl. Comput. Harmon. Anal., 21, 5, 10.1016/j.acha.2006.04.006 Shabat, 2015, Accelerating particle filter using randomized multiscale and fast multipole type methods, IEEE Trans. Pattern Anal. Mach. Intell., 37, 1396, 10.1109/TPAMI.2015.2392754 Schenk, 2000, Efficient sparse Lu factorization with left–right looking strategy on shared memory multiprocessors, BIT Numer. Math., 40, 158, 10.1023/A:1022326604210 Demmel, 1999, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20, 720, 10.1137/S0895479895291765 Davis, 1997, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., 18, 140, 10.1137/S0895479894246905 Golub, 2012 Kirk, 2007, nVidia CUDA software and GPU parallel computing architecture, vol. 7, 103 Martinsson, 2011, A randomized algorithm for the decomposition of matrices, Appl. Comput. Harmon. Anal., 30, 47, 10.1016/j.acha.2010.02.003 Halko, 2011, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53, 217, 10.1137/090771806 Litvak, 2005, Smallest singular value of random matrices and geometry of random polytopes, Adv. Math., 195, 491, 10.1016/j.aim.2004.08.004 Litvak, 2010, Smallest singular value of sparse random matrices, Studia Math., 212, 195, 10.4064/sm212-3-1 Bermanis, 2013, Multiscale data sampling and function extension, Appl. Comput. Harmon. Anal., 34, 15, 10.1016/j.acha.2012.03.002 David, 2009 Donoho, 2006, Compressed sensing, IEEE Trans. Inform. Theory, 52, 1289, 10.1109/TIT.2006.871582 Avron, 2010, Blendenpik: supercharging LAPACK's least-squares solver, SIAM J. Sci. Comput., 32, 1217, 10.1137/090767911 Chan, 1987, Rank revealing QR factorizations, Linear Algebra Appl., 88, 67 Gu, 1996, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci. Comput., 17, 848, 10.1137/0917055 Pan, 2000, On the existence and computation of rank-revealing LU factorizations, Linear Algebra Appl., 316, 199, 10.1016/S0024-3795(00)00120-8 Miranian, 2003, Strong rank revealing LU factorizations, Linear Algebra Appl., 367, 1, 10.1016/S0024-3795(02)00572-4 Cheng, 2005, On the compression of low rank matrices, SIAM J. Sci. Comput., 26, 1389, 10.1137/030602678 Drineas, 2008, Relative-error CUR matrix decompositions, SIAM J. Matrix Anal. Appl., 30, 844, 10.1137/07070471X Rokhlin, 2008, A fast randomized algorithm for overdetermined linear least-squares regression, Proc. Nat. Acad. Sci., 105, 13212, 10.1073/pnas.0804869105 Clarkson, 2013, Low rank approximation and regression in input sparsity time, 81 Achlioptas, 2007, Fast computation of low-rank matrix approximations, J. ACM, 54, 9, 10.1145/1219092.1219097 Clarkson, 2009, Numerical linear algebra in the streaming model, 205 Magen, 2011, Low rank matrix-valued Chernoff bounds and approximate matrix multiplication, 1422 Frieze, 2004, Fast Monte-Carlo algorithms for finding low-rank approximations, J. ACM, 51, 1025, 10.1145/1039488.1039494 Drineas, 2006, Fast Monte Carlo algorithms for matrices II: computing a low-rank approximation to a matrix, SIAM J. Comput., 36, 158, 10.1137/S0097539704442696 Boutsidis, 2013, Improved matrix algorithms via the subsampled randomized Hadamard transform, SIAM J. Matrix Anal. Appl., 34, 1301, 10.1137/120874540 Bhatia, 1997 Goldstine, 1951, Numerical inverting of matrices of high order II, Proc. Amer. Math. Soc., 2, 188, 10.1090/S0002-9939-1951-0041539-X Rudelson, 2009, Smallest singular value of a random rectangular matrix, Comm. Pure Appl. Math., 62, 1707, 10.1002/cpa.20294 Ailon, 2009, The fast Johnson–Lindenstrauss transform and approximate nearest neighbors, SIAM J. Comput., 39, 302, 10.1137/060673096 Woolfe, 2008, A fast randomized algorithm for the approximation of matrices, Appl. Comput. Harmon. Anal., 25, 335, 10.1016/j.acha.2007.12.002 Trefethen, 1990, Average-case stability of Gaussian elimination, SIAM J. Matrix Anal. Appl., 11, 335, 10.1137/0611023 Stewart, 1995 Chen, 2005, Condition numbers of Gaussian random matrices, SIAM J. Matrix Anal. Appl., 27, 603, 10.1137/040616413 Witten, 2013, Randomized algorithms for low-rank matrix factorizations: sharp performance bounds, Algorithmica, 1 Tropp, 2011, Improved analysis of the subsampled randomized Hadamard transform, Adv. Adapt. Data Anal., 3, 115, 10.1142/S1793536911000787 P.-G. Martinsson, A. Szlam, M. Tygert, Normalized power iterations for the computation of SVD, Manuscript, Nov. Larsen, 1998