Random function based spectral representation of stationary and non-stationary stochastic processes

Probabilistic Engineering Mechanics - Tập 45 - Trang 115-126 - 2016
Zhangjun Liu1,2, Wei Liu1, Yongbo Peng3,2
1Hubei Key Laboratory of Disaster Prevention and Reduction, China Three Gorges University, Yichang 443002, PR China
2State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, PR China
3Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Borgman, 1969, Ocean wave simulation for engineering design, 95, 557

Cacciola, 2011, A method for generating fully non-stationary and spectrum-compatible ground motion vector processes, Soil. Dyn. Earthq. Eng., 31, 351, 10.1016/j.soildyn.2010.09.003

Chen, 2007, The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters, Struct. Saf., 29, 77, 10.1016/j.strusafe.2006.02.002

Chen, 2013, Optimal determination of frequencies in the spectral representation of stochastic processes, Comput. Mech., 51, 791, 10.1007/s00466-012-0764-0

Chen, 2013, Stochastic harmonic function representation of stochastic processes, J. Appl. Mech.-Trans. ASME, 80, 011001, 10.1115/1.4006936

Clough, 1975

Code for Seismic Design of Buildings (GB50011-2010). China Architecture and Building Press, Beijing, 2010. (In Chinese)

Deodatis, 1996, Simulation of ergodic multivariate stochastic processes, J. Eng. Mech., 122, 778, 10.1061/(ASCE)0733-9399(1996)122:8(778)

Deodatis, 1996, Non-stationary stochastic vector processes: seismic ground motion applications, Probab. Eng. Mech., 11, 149, 10.1016/0266-8920(96)00007-0

Deodatis, 1989, Simulation of seismic ground motion using stochastic waves, J. Eng. Mech., 115, 2723, 10.1061/(ASCE)0733-9399(1989)115:12(2723)

Douglas, 2008, A survey of techniques for predicting earthquake ground motions for engineering purposes, Surv. Geophys., 29, 187, 10.1007/s10712-008-9046-y

Eurocode 8: Design of Structures for Earthquake Resistance. 〈http://www.eurocode-online.eu/en/〉

Ghanem, 1991

H. Goto, K. Toki. Structural response to nonstationary random excitation. In: Proceedings of the 4th WCEE, Santiago, Chile, 1969.

Grigoriu, 2006, Evaluation of Karhunen–Loève, spectral, and sampling representations for stochastic processes, J. Eng. Mech., 132, 179, 10.1061/(ASCE)0733-9399(2006)132:2(179)

Huang, 2001, Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes, Int. J. Numer. Methods Eng., 52, 1029, 10.1002/nme.255

Li, 1996

Li, 2006, The probability density evolution method for dynamic response analysis of nonlinear stochastic structures, Int. J. Numer. Methods Eng., 65, 882, 10.1002/nme.1479

Li, 2007, The number theoretical method in response analysis of nonlinear stochastic structures, Comput. Mech., 39, 693, 10.1007/s00466-006-0054-9

Li, 2009

Li, 2007, The equivalent extreme-value event and evaluation of the structural system reliability, Struct. Saf., 29, 112, 10.1016/j.strusafe.2006.03.002

Li, 2010, A physical approach to structural stochastic optimal controls, Probab. Eng. Mech., 25, 127, 10.1016/j.probengmech.2009.08.006

Liang, 2007, Simulation of nonstationary stochastic processes by spectral representation, J. Eng. Mech., 133, 616, 10.1061/(ASCE)0733-9399(2007)133:6(616)

Peng, 2014, Nonlinear response of structures subjected to stochastic excitations via probability density evolution method, Adv. Struct. Eng., 17, 801, 10.1260/1369-4332.17.6.801

Phoon, 2002, Simulation of second-order processes using Karhunen–Loeve expansion, Comput. Struct., 80, 1049, 10.1016/S0045-7949(02)00064-0

Phoon, 2004, Simulation of non-Gaussian processes using fractile correlation, Probab. Eng. Mech., 19, 287, 10.1016/j.probengmech.2003.09.001

Priestley, 1965, Evolutionary spectra and nonstationary processes, J. R. Stat. Soc.: Ser. B, 27, 204, 10.1111/j.2517-6161.1965.tb01488.x

Priestley, 1967, Power spectral analysis of non-stationary random processes, J. Sound. Vib., 6, 86, 10.1016/0022-460X(67)90160-5

Rice, 1944, Mathematical analysis of random noise, Bell Syst. Tech. J., 23, 282, 10.1002/j.1538-7305.1944.tb00874.x

Rice, 1945, Mathematical analysis of random noise, Bell Syst. Tech. J., 24, 46, 10.1002/j.1538-7305.1945.tb00453.x

Wax, 1954, 133

Seya, 1993, Probabilistic seismic analysis of a steel frame structure, Probab. Eng. Mech., 8, 127, 10.1016/0266-8920(93)90006-H

Shinozuka, 1971, Simulation of multivariate and multidimensional random processes, J. Acoust. Soc. Am., 49, 357, 10.1121/1.1912338

Shinozuka, 1991, Simulation of stochastic processes by spectral representation, Appl. Mech. Rev., 44, 191, 10.1115/1.3119501

Shinozuka, 1996, Simulation of multi-dimensional Gaussian stochastic fields by spectral representation, Appl. Mech. Rev., 49, 29, 10.1115/1.3101883

Shinozuka, 1972, Digital simulation of random processes and its applications, J. Sound. Vib., 25, 111, 10.1016/0022-460X(72)90600-1

Spanos, 1998, Monte Carlo treatment of random fields: a broad perspective, Appl. Mech. Rev., 51, 219, 10.1115/1.3098999