Random Sampling of Quantum States: a Survey of Methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
P. Benioff, The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563 (1980)
P. Benioff, Quantum mechanical models of Turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581 (1982)
T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O Brien, Quantum computers. Nature. 464, 45 (2010)
N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10 (2013)
M. Schuld, I. Sinayskiy, F. Petruccione, An introduction to quantum machine learning. Contemp. Phys. 56, 172 (2015)
S. Trotzky, Y-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325 (2012)
S. Aaronson, How might quantum information transform our future? https://www.bigquestionsonline.com/content/how-might-quantum-information-transform-our-future (2014)
J. Grondalski, D.M. Etlinger, D.F.V. James, The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A. 300, 573 (2002)
D. Girolami, G. Adesso, Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A. 83, 052108 (2011)
J. Batle, M. Casas, A.R. Plastino, A. Plastino, Entanglement, mixedness, and q-entropies. Phys. Lett. A. 296, 251 (2002)
M. Roncaglia, A. Montorsi, M. Genovese, Bipartite entanglement of quantum states in a pair basis. Phys. Rev. A. 90, 062303 (2014)
S. Vinjanampathy, A.R.P. Rau, Quantum discord for qubit-qudit systems. J. Phys. A Math. Theor. 45, 095303 (2012)
X.-M. Lu, J. Ma, Z. Xi, X. Wang, Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A. 83, 012327 (2011)
F.M. Miatto, K. Piché, T. Brougham, R.W Boyd, The optimal bound of quantum erasure with limited means. arXiv: 2313.1410
F.M. Miatto, K. Piché, T. Brougham, R.W Boyd, Recovering full coherence in a qubit by measuring half of its environment. arXiv: 1502.07030
M.J.W. Hall, Random quantum correlations, density operator distributions. Phys. Lett. A. 242, 123 (1998)
C. Nadal, S.N. Majumdar, M. Vergassola, Statistical distribution of quantum entanglement for a random bipartite state. J. Stat. Phys. 142, 403 (2011)
A. Hamma, S. Santra, P. Zanardi, Quantum entanglement in random physical states. Phys. Rev. Lett. 109, 040502 (2012)
S. Agarwal, S.M.H. Rafsanjani, Maximizing genuine multipartite entanglement of n mixed qubits. Int. J. Quant. Inf. 11, 1350043 (2013)
F.D. Cunden, P. Facchi, G. Florio, Polarized ensembles of random pure states. J. Phys A: Math. Theor. 46, 315306 (2013)
M.B. Hastings, Superadditivity of communication capacity using entangled inputs. arXiv: 0809.3972
D.P. Landau, K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009)
T.M. Cover, J.A. Thomas. Elements of Information Theory (John Wiley, New Jersey, 2006)
M.A. Carlton, J.L. Devore. Probability with Applications in Engineering, Science, and Technology (Springer, New York , 2014)
E. Brüning, H. Mäkelä, A. Messina, F. Petruccione, Parametrizations of density matrices. J. Mod. Opt. 59, 1 (2012)
T. Radtke, S. Fritzsche, Simulation of n-qubit quantum systems. IV. Parametrizations of quantum states, matrices and probability distributions. Comput. Phys. Commun. 179, 647 (2008)
V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A. 57, 1619 (1998)
J. Maziero, Generating pseudo-random discrete probability distributions. Braz. J. Phys. 45, 377 (2015)
M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge , 2000)
G.W. Stewart, The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17, 403 (1980)
J. Emerson. Y.S. Weinstein, M. Saraceno, S. Lloyd, D.G. Cory, Pseudo-random unitary operators for quantum information processing. Science. 302, 2098 (2003)
J. Shang, Y.-L. Seah, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)
Y.-L. Seah, J. Shang, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. II. New J. Phys. 17, 043018 (2015)
J. Maziero, Distribution of mutual information in multipartite states. Braz. J. Phys. 44, 194 (2014)
L. Aolita, F. de Melo, L. Davidovich, Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)
L.C. Céleri, J. Maziero, R.M. Serra, Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quant. Inf. 9, 1837 (2011)
D. Girolami, Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)
M. Matsumoto, T. Nishimura, Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model. Comput. Sim. 8, 3 (1998)
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen. LAPACK Users’ Guide, 3rd (Society for Industrial and Applied Mathematics, Philadelphia, 1999)
J.A. Miszczak, Generating and using random quantum states in Mathematica. Comput. Phys. Commun. 183, 118 (2012)
M. Ledoux, The concentration of measure phenomenon. Mathematical Surveys and Monographs of the American Mathematical Society. 89 (2001)
P. Hayden, in Concentration of measure effects in quantum information. Proceedings of Symposia in Applied Mathematics, Vol. 68, (2010), p. 3
K. życzkowski, K.A. Penson, I. Nechita, B. Collins, Generating random density matrices. J. Math. Phys. 52, 062201 (2011)
I. Bengtsson, K. życzkowski. Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2007)