Random Matrices: the Distribution of the Smallest Singular Values

Terence Tao1, Van Vu2
1Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA
2Department of Mathematics, Rutgers University, Piscataway, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alon N., Krivelevich M., Vu V.: Concentration of eigenvalues of random matrices. Israel Math. J. 131, 259–267 (2002)

Bai Z.D.: Convergence rate of expected spectral distributions of large random matrices, Part II. Sample covariance matrices. Ann. Probab. 21, 625–648 (1993)

Bai Z.D., Miao B., Tsay J.: A note on the convergence rate of the spectral distributions of large random matrices. Statist. Probab. Lett. 34, 95–101 (1997)

Bai Z.D., Miao B., Yao J.-F.: Convergence rates of spectral distributions of large sample covariance matrices. SIAM J. Matrix Anal. Appl. 25, 105–127 (2003)

Z.D. Bai, J. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Science press, 2006.

Bai Z.D., Yin Y.Q.: Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16(4), 1729–1741 (1988)

Ben Arous G., Péché S.: Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. 58, 1316–1357 (2005)

Borodin A., Forrester P.: Increasing subsequences and the hard-to-soft edge transition in matrix ensembles. J. Phys. A 36(2), 2963–2981 (2003)

J. Bourgain, P. Wood, V. Vu, On the singularity probability of random discrete matrices, submitted.

Drineas P., Kannan R., Mahoney M.: Fast Monte Carlo algorithms for matrices. I. Approximating matrix multiplication. SIAM J. Comput. 36(1), 132–157 (2006)

Edelman A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9, 543–560 (1988)

Edelman A.: The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Linear Algebra Appl. 159, 55–80 (1991)

O.N. Feldheim, S. Sodin, A universality result for the smallest eigenvalues of certain sample covariance matrices, Geom. Funct. Anal. 20:1 (2010), DOI: 10.1007/s00039-010-0055-x .

Forrester P.J.: The spectrum edge of random matrix ensembles. Nuclear Phys. B 402, 709–728 (1993)

Forrester P.J.: Exact results and universal asymptotics in the Laguerre random matrix ensemble. J. Math. Phys. 35(5), 2539–2551 (1994)

Forrester P.J., Witte N.S.: The distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble. Kyushu J. Math. 61(2), 457–526 (2007)

Frieze A., Kannan R., Vempala S.: Fast Monte-Carlo algorithms for finding low-rank approximations. J. ACM 51(6), 1025–1041 (2004)

F. Götze, A. Tikhomirov, The rate of convergence of spectra of sample covariance matrices, preprint.

A. Guionnet, O. Zeitouni, Concentration of the spectral measure for large matrices, Electron. Comm. Probab. 5 (2000), 119–136 (electronic).

Johansson K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437–476 (2000)

Johansson K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215(3), 683–705 (2001)

Johnstone I.: On the distribution of largest principal component. Ann. Statist. 29, 295–327 (2001)

Kahn J., Komlós J., Szemerédi E.: On the probability that a random ±1 matrix is singular. J. Amer. Math. Soc. 8, 223–240 (1995)

Komlós J.: On the determinant of (0, 1) matrices. Studia Sci. Math. Hungar. 2, 7–22 (1967)

Komlós J.: On the determinant of random matrices. Studia Sci. Math. Hungar. 3, 387–399 (1968)

M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs 98, AMS (2001).

Lindeberg J.W.: Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15, 211–225 (1922)

Litvak A., Pajor A., Rudelson M., Tomczak-Jaegermann N.: Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491–523 (2005)

Marchenko V.A., Pastur L.A.: The distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72, 507–536 (1967)

Mehta M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York, NY (1967)

V. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces (with an appendix by M. Gromov), Springer Lecture Notes in Mathematics, 1200 (1986).

Nagao T., Slevin K.: Laguerre ensembles of random matrices: nonuniversal correlation functions. J. Math. Phys. 34(6), 2317–2330 (1993)

Nagao T., Wadati M.: Correlation functions of random matrix ensembles related to classical orthogonal polynomials. J. Phys. Soc. Japan 60(10), 3298–3322 (1991)

von Neumann J., Goldstine H.: Numerical inverting matrices of high order. Bull. Amer. Math. Soc. 53, 1021–1099 (1947)

Pastur L.A.: Spectra of random self-adjoint operators. Russian Math. Surveys 28, 1–67 (1973)

V. Paulauskas, A. Rackauskas, Approximation Theory in the Central Limit Theorem, Kluwer Academic Publishers, 1989.

B. Rider, J. Ramirez, Diffusion at the random matrix hard edge, Comm. Math. Phys., to appear.

Rudelson M.: Lower estimates for the singular values of random matrices. Compt. Rendus Math. de L’Academie des Sciences 342(4), 247–252 (2006)

Rudelson M.: Invertibility of random matrices: norm of the inverse. Ann. of Math. (2) 168(2), 575–600 (2008)

Rudelson M., Vershynin R.: The least singular value of a random square matrix is O(n −1/2). C. R. Math. Acad. Sci. Paris 346(15-16), 893–896 (2008)

Rudelson M., Vershynin R.: The Littlewood–Offord problem and invertibility of random matrices. Advances in Mathematics 218, 600–633 (2008)

Rudelson M., Vershynin R.: The least singular value of a random rectangular matrix. C. R. Acad. Sci. Paris 346, 893–896 (2008)

Smale S.: On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc. 13, 87–121 (1985)

Soshnikov A.: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Statist. Phys. 108(5-6), 1033–1056 (2002)

D. Spielman, S.-H. Teng, Smoothed analysis of algorithms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing (2002), 597–606.

Stroock D.: Probability Theory. An Analytic View. Cambridge University Press, Cambridge (1993)

Talagrand M.: A new look at independence. Ann. Prob. 24(1), 1–34 (1996)

Tao T., Vu V.: On random ±1 matrices: Singularity and Determinant. Random Structures and Algorithms 28, 1–23 (2006)

Tao T., Vu V.: Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Annals of Mathematics 169, 595–632 (2009)

T. Tao, V. Vu, The condition number of a randomly perturbed matrix, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York (2007), 248–255.

Tao T., Vu V.: On the singularity probability of random Bernoulli matrices. Journal of the AMS 20(3), 603–628 (2007)

Tao T., Vu V.: Random matrices: The circular law. Commun. Contemp. Math. 10(2), 261–307 (2008)

T. Tao, V. Vu, Random matrices: A general approach for the least singular value problem, submitted.

T. Tao, V. Vu, Random matrices: Universality of ESDs and the circular law, submitted.

T. Tao, V. Vu, From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices, Bulletin of AMS, to appear.

Yin Y.Q.: Limiting spectral distribution for a class of random matrices. J. Multivariate Anal. 20, 50–68 (1986)