Random Geometric Complexes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alon, N., Spencer, J.H.: The Probabilistic Method, Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. Wiley, Hoboken (2008). With an appendix on the life and work of Paul Erdős
Babson, E., Hoffman, C., Kahle, M.: The fundamental group of random 2-complexes. J. Am. Math. Soc. 24(1), 1–28 (2011)
Barishnokov, Y.: Quantum foam, August 2009. (Talk given at AIM Workshop on “Topological complexity of random sets”)
Björner, A.: Topological methods. In: Handbook of Combinatorics, vol. 2, pp. 1819–1872. Elsevier, Amsterdam (1995)
Bubenik, P., Carlson, G., Kim, P.T., Luo, Z.M.: Statistical topology via Morse theory, persistence and nonparametric estimation. Algebr. Methods Stat. Probab. II 516, 75 (2010)
Bubenik, P., Kim, P.T.: A statistical approach to persistent homology. Homology Homotopy Appl. 9(2), 337–362 (2007)
Chambers, E.W., de Silva, V., Erickson, J., Ghrist, R.: Vietoris–Rips complexes of planar point sets. Discrete Comput. Geom. 44(1), 75–90 (2010)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)
Diaconis, P.: Application of topology. Quicktime video, September 2006. (Talk given at MSRI Workshop on “Application of topology in science and engineering,” Quicktime video available on MSRI webpage)
Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Surveys on Discrete and Computational Geometry. Contemp. Math., vol. 453, pp. 257–282. Am. Math. Soc., Providence (2008)
Forman, R.: A user’s guide to discrete Morse theory. Sémin. Lothar. Comb. 48, Art. B48c (2002), 35 pp. (electronic)
Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263. Springer, New York (1987)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Hausmann, J.-C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. In: Prospects in Topology, Princeton, NJ, 1994. Ann. of Math. Stud., vol. 138, pp. 175–188. Princeton University Press, Princeton (1995)
Kahle, M.: The neighborhood complex of a random graph. J. Comb. Theory, Ser. A 114(2), 380–387 (2007)
Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Submitted, arXiv:1009.4130 (2010)
Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)
Linial, N., Novik, I.: How neighborly can a centrally symmetric polytope be? Discrete Comput. Geom. 36(2), 273–281 (2006)
Meshulam, R., Wallach, N.: Homological connectivity of random k-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2009)
Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)
Niyogi, P., Smale, S., Weinberger, S.: A topological view of unsupervised learning from noisy data (2010, to appear)
Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability, vol. 5. Oxford University Press, Oxford (2003)
Pippenger, N., Schleich, K.: Topological characteristics of random triangulated surfaces. Random Struct. Algorithms 28(3), 247–288 (2006)
Vietoris, L.: Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97(1), 454–472 (1927)