Ramsey numbers for local colorings

Springer Science and Business Media LLC - Tập 3 Số 1 - Trang 267-277 - 1987
András Gyárfás1, Jenő Lehel1, R. H. Schelp2, Zs. Tuza1
1Computer and Automation Institute, Hungarian Academy of Sciences, Kende u. 13-17, 1111, Budapest, Hungary
2Memphis State University, 38152, Memphis, TN, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burr, S.A., Erdös, P.: Extremal Ramsey theory for graphs. Utilitas math.9, 247–258 (1976)

Burr, S.A., Erdös, P., Spencer, J.H.: Ramsey theorems for multiple copies of graphs. Trans. Amer. Math. Soc.209, 87–99 (1975)

Burr, S.A., Roberts, J.A.: On Ramsey numbers for stars. Utilitas Math.4, 217–220 (1973)

Chung, F.R.K.: On a Ramsey-type problem. J. Graph Theory.7, 79–83 (1983)

Cockayne, E.J., Lorimer, P.J.: The Ramsey graph numbers for stripes. J. Aust. Math. Soc.19, 252–256 (1975)

Erdös, P. Faudree, R.J., Rousseau, C.C., Schelp, R.H.: Ramsey numbers for brooms, Utilitas Math.35, 283–293 (1982)

Erdös, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. Colloq. Math. Soc. Janos. Bolyai10, 609–627 (1974)

Faudree, R.J., Schelp, R.H.: All Ramsey numbers for cycles in graphs. Discrete Math.8, 313–329 (1974)

Gerencsér, L., Gyárfás, A.: On Ramsey type problems. Ann. Univ. Sci. Budap. Eötvös Eötvos Sect. Math.10, 167–170 (1967)

Greenwoood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs. Can. J. Math.9, 1–7 (1955)

Irving, R.W.: Generalized Ramsey numbers for small graphs. Discrete Math.9, 251–264 (1974)

Ray-Chaudhuri, D.K. Wilson, R.M.: Solution of Kirkman's school girl problem. Proc. Symp. Pure Math.19, 187–204 (1972)

Rosta, V.: On a Ramsey type problem of J.A. Bondy and P. Erdös I, II. J. Comb. Theory (B)15, 94–120 (1973)