Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing

Journal of Raman Spectroscopy - Tập 50 Số 11 - Trang 1630-1641 - 2019
Yannick Bleu1, Florent Bourquard1, Anne‐Sophie Loir1, Vincent Barnier2, Florence Garrelie1, Christophe Donnet1
1Univ de Lyon, Université Jean Monnet Saint‐Etienne, CNRS Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F‐42023 Saint‐Etienne France
2Mines Saint‐Etienne Univ Lyon, CNRS, UMR 5307 LGF, Centre SMS, F‐42023 Saint‐Etienne France

Tóm tắt

Abstract

We report the results of a comparative investigation of graphene films prepared on Si(100) and fused silica (SiO2) combining pulsed laser deposition and rapid thermal annealing using Ni catalyst. The effect of modifying the substrate and/or growth temperature (600–1,000°C) of graphene synthesis was investigated by Raman microspectroscopy mapping. Graphene grown on Si(100) was multilayered, and various nickel silicide phases had formed underneath, revealing dependence on the growth temperature. Films prepared on SiO2 mainly comprised bilayered and trilayered graphene, with no traces of nickel silicide. Analysis of Raman D, G, and 2D peak intensities and positions showed that modifying the growth temperature had different effects when a Si(100) or a SiO2 substrate is used. These findings advance our understanding of how different combinations of substrate and thermal processing parameters affect graphene synthesis from solid carbon source using nickel as a catalyst. This knowledge will enable better control of the properties of graphene film (defects, number of layers, etc.) and will have a high potential impact on the design of graphene‐based devices for scientific or industrial applications.

Từ khóa


Tài liệu tham khảo

10.1126/science.1156965

10.1126/science.1157996

10.1021/nl0731872

10.1021/ar3001266

10.1016/j.ssc.2008.02.024

10.1088/1361-6633/80/3/036502

10.1002/jrs.5230

10.1038/nature11458

10.1038/nmat1849

10.1021/nn402354j

10.1038/nphoton.2010.186

10.1016/j.bios.2011.05.039

10.1039/C8TC00463C

10.1039/C3CS60303B

10.1016/j.carbon.2016.11.081

10.1016/j.matlet.2016.10.054

10.1039/C5TA00252D

10.1016/j.carbon.2015.11.026

10.1063/1.2828975

10.1021/am3000177

10.1038/s41598-018-21639-9

10.1016/j.apsusc.2012.01.019

10.1016/j.carbon.2016.07.066

10.1021/acsami.5b10647

10.1063/1.4973523

10.3389/fchem.2018.00572

10.1038/nnano.2015.322

10.1021/acs.jpcc.8b06789

10.1016/j.carbon.2012.09.008

10.1016/j.carbon.2012.06.050

10.1063/1.4821944

10.1016/j.diamond.2012.02.014

10.1016/j.tsf.2016.03.024

10.1063/1.3584021

10.1016/j.apsusc.2014.08.185

10.1016/j.matlet.2017.05.124

10.1063/1.4973736

10.1002/cphc.201101020

10.1103/PhysRevLett.97.187401

10.1016/j.physrep.2009.02.003

10.1016/j.ssc.2007.03.052

10.1038/nnano.2008.67

10.1140/epjst/e2007-00237-1

10.1088/0957-4484/23/36/365701

10.1038/nnano.2013.46

10.1038/ncomms6309

10.1098/rsta.2010.0213

10.1063/1.3062851

10.1039/C6NR03470E

10.1063/1.3498815

10.1063/1.2805024

10.1016/j.ssc.2009.01.036

10.1002/jrs.5552

10.1002/jrs.5279

10.1002/jrs.5375

10.1002/jrs.5219

10.1002/jrs.5189

10.1002/jrs.5228

10.1063/1.2196057

10.1098/rsta.2004.1452

10.1088/0953-8984/24/33/335301

10.3390/ma12040666

10.1063/1.4795501

10.1016/j.carbon.2009.03.051

10.1016/j.tsf.2012.02.008

10.1016/j.mee.2003.08.010

10.1149/1.1390986

10.1007/s00339-002-2067-3

10.1016/j.micron.2008.03.007

10.1103/PhysRevB.51.10048

10.1103/PhysRevB.61.14095

10.1098/rsta.2004.1452

10.1063/1.2929746

10.1021/nl802156w

10.1021/nn800031m

10.1038/srep04630