Raman spectroscopic detection of interleukin-10 and angiotensin converting enzyme

Shuo Zhang1, Frederieke A. M. van der Mee1, Roel J. Erckens1, Carroll A. B. Webers1, Tos T. J. M. Berendschot1
1University Eye Clinic Maastricht, Maastricht, The Netherlands

Tóm tắt

In this report we present a confocal Raman system to identify the unique spectral features of two proteins, Interleukin-10 and Angiotensin Converting Enzyme. Characteristic Raman spectra were successfully acquired and identified for the first time to our knowledge, showing the potential of Raman spectroscopy as a non-invasive investigation tool for biomedical applications.

Tài liệu tham khảo

Kuiper, J.J., et al.: An Ocular Protein Triad Can Classify Four Complex Retinal Diseases. Sci Rep. 7, 41595 (2017) Iyer, S.S., Cheng, G.: Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32(1), 23–63 (2012). https://doi.org/10.1615/CritRevImmunol.v32.i1.30 Spolski, R., Leonard, W.J.: Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 13(5), 379–395 (2014). https://doi.org/10.1038/nrd4296 Bernstein, K.E., Khan, Z., Giani, J.F., Cao, D.Y., Bernstein, E.A., Shen, X.Z.: Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 14(5), 325–336 (2018). https://doi.org/10.1038/nrneph.2018.15 de Jager, W., Prakken, B.J., Bijlsma, J.W.J., Kuis, W., Rijkers, G.T.: Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J. Immunol. Methods. 300(1–2), 124–135 (2005). https://doi.org/10.1016/j.jim.2005.03.009 Smith, W.E.: Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 37(5), 955–964 (2008). https://doi.org/10.1039/b708841h Pannico, M., et al.: Direct printing of gold nanospheres from colloidal solutions by pyro-electrohydrodynamic jet allows hypersensitive SERS sensing. Appl Surface Sci. 531, (2020) Pelletier, C.C., Lambert, J.L., Borchert, M.: Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration. Appl. Spectrosc. 59(8), 1024–1031 (2005). https://doi.org/10.1366/0003702054615133 Movasaghi, Z., Rehman, S., Rehman, I.U.: Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42(5), 493–541 (2007). https://doi.org/10.1080/05704920701551530 Li, Z., et al.: A Plasmonic Staircase Nano-Antenna Device with Strong Electric Field Enhancement for Surface Enhanced Raman Scattering (SERS) Applications. J Phys D: Applied Physics. 45, 30 (2012) Marshall, S., Cooper, J.B.: Quantitative Raman spectroscopy when the signal-to-noise is below the limit of quantitation due to fluorescence interference: advantages of a moving window sequentially shifted excitation approach. Appl. Spectrosc. 70(9), 1489–1501 (2016). https://doi.org/10.1177/0003702816662621 Grilli, S., et al.: Active Accumulation of Very Diluted Biomolecules by Nano-Dispensing for Easy Detection below the Femtomolar Range. Nature Commun. 5, 5314 (2014) Rega, R., et al.: Detecting Collagen Molecules at Picogram Level through Electric Field-Induced Accumulation. Sensors (Basel). 20, 12 (2020) Kupcova Skalnikova, H., et al.: Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. Int J Mol Sci. 18, 12 (2017) Xu, K., et al.: Micro Optical Sensors Based on Avalanching Silicon Light-Emitting Devices Monolithically Integrated on Chips. Optical Materials Express. 9, 10 (2019) Xu, K., et al.: Light Emission from a Poly-Silicon Device with Carrier Injection Engineering. Materials Sci Engineering: B. 231, 28–31 (2018) Erckens, R., et al.: Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med. Sci. 16(4), 236–252 (2001). https://doi.org/10.1007/PL00011360 Erckens, R.J., Jongsma, F.H.M., Wicksted, J.P., Hendrikse, F., March, W.F., Motamedi, M.: Drug-induced corneal hydration changes monitoredin vivo by non-invasive confocal Raman spectroscopy. J. Raman Spectrosc. 32(9), 733–737 (2001). https://doi.org/10.1002/jrs.731 Elshout, M., Erckens, R.J., Webers, C.A., Beckers, H.J., Berendschot, T.T., de Brabander, J., Hendrikse, F., Schouten, J.S.: Detection of Raman spectra in ocular drugs for potential in vivo application of Raman spectroscopy. J. Ocul. Pharmacol. Ther. 27(5), 445–451 (2011). https://doi.org/10.1089/jop.2011.0018 Kaji, Y., et al.: Raman Microscopy: a Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea. Cornea. 36(Suppl 1), S67–S71 (2017) Paluszkiewicz, C., Chaniecki, P., Rękas, M., Rajchel, B., Piergies, N., Kwiatek, W.M.: Analysis of human lenses by Raman microspectroscopy. Acta Phys. Pol. A. 129(2), 244–246 (2016). https://doi.org/10.12693/APhysPolA.129.244 Lazaro, J.C., et al.: Optimizing the Raman signal for characterizing organic samples: the effect of slit aperture and exposure time. Spectrosc-Int J. 23(2), 71–80 (2009). https://doi.org/10.1155/2009/764524 Awazu, K., Kawazoe, H.: Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses. J. Appl. Phys. 94(10), 6243–6262 (2003). https://doi.org/10.1063/1.1618351 Galeener, F.L.: Band limits and the vibrational spectra of tetrahedral glasses. Phys. Rev. B. 19(8), 4292–4297 (1979). https://doi.org/10.1103/PhysRevB.19.4292 Galeener, F.L.: Planar rings in vitreous silica. J. Non-Cryst. Solids. 49(1), 53–62 (1982). https://doi.org/10.1016/0022-3093(82)90108-9 Gniadecka, M., Wulf, H.C., Nymark Mortensen, N., Faurskov Nielsen, O., Christensen, D.H.: Diagnosis of basal cell carcinoma by Raman spectroscopy. J. Raman Spectrosc. 28(23), 125–129 (1997). https://doi.org/10.1002/(SICI)1097-4555(199702)28:2/3<125::AID-JRS65>3.0.CO;2-# Shetty, G., Kendall, C., Shepherd, N., Stone, N., Barr, H.: Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br. J. Cancer. 94(10), 1460–1464 (2006). https://doi.org/10.1038/sj.bjc.6603102 Faolain, E.O., et al.: A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vib. Spectrosc. 38(1), 121–127 (2005). https://doi.org/10.1016/j.vibspec.2005.02.013 C. David et al., "Raman and IR Spectroscopy of Manganese Superoxide Dismutase, a Pathology Biomarker," Vibrational Spectroscopy 62(50–58 (2012) F. J. H. Douglas A. Skoog, Stanley R. Crouch, Principles of Instrumental Analysis, 7th ed., Cengage Learning (2016) L. M. Levine, "Basic and Clinical Science Course, Section 2: Fundamentals and Principles of Ophthalmology," in Basic and Clinical Science Course, p. 430, American Academy of Ophthalmology (2018–2019) Byrne, H.J., Knief, P., Keating, M.E., Bonnier, F.: Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem. Soc. Rev. 45(7), 1865–1878 (2016). https://doi.org/10.1039/C5CS00440C Woong Moon, S., Kim, W., Choi, S., Shin, J.H.: Label-free optical detection of age-related and diabetic oxidative damage in human aqueous humors. Microsc. Res. Tech. 79(11), 1050–1055 (2016). https://doi.org/10.1002/jemt.22743 C. J. F. Bertens et al., "Confocal Raman spectroscopy: Evaluation of a non-invasive technique for the detection of topically applied ketorolac tromethamine in vitro and in vivo," Int. J. Pharm. 570(118641 (2019) S. Zhang et al., "in Vitro and in Vivo Datasets of Topically Applied Ketorolac Tromethamine in Aqueous Humor Using Raman Spectroscopy," Data Brief 27(104694 (2019)