Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA

Springer Science and Business Media LLC - Tập 32 Số 1 - Trang 105-122 - 2018
Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬1, Mazen Ismaeel Ghareb2, Isa Ebtehaj3, Hossein Bonakdari3, Ridwan Siddique4, Salim Heddam5, Ali A. Yusif6, Ravinesh C. Deo7
1Civil and Structural Engineering Department, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43000 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Computer Science, College of Science and Technology, University of Human Development, Sulaymaniyah, KRG, Iraq
3Department of Civil Engineering, Razi University, Kermanshah, Iran
4Northeast Climate Science Center, University of Massachusetts, Amherst, USA
5Faculty of Science, Agronomy Department, Hydraulics Division University 20 Août 1955, SKIKDA, Algeria
6Water Resources Engineering Department, College of Engineering, University of Duhok, Duhok, Iraq
7School of Agricultural, Computational and Environmental Sciences, Institute of Agriculture and Environment (I Ag & E), University of Southern Queensland, Springfield, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbot J, Marohasy J (2012) Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Adv Atmos Sci 29:717–730. https://doi.org/10.1007/s00376-012-1259-9

Abhishek K, Kumar A, Ranjan R, Kumar S (2012) A rainfall prediction model using artificial neural network. 2012 I.E. Control Syst Grad Res Colloq, pp 82–87. https://doi.org/10.1109/ICSGRC.2012.6287140

Ahmed NK, Atiya AF, Gayar N El, El-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econ Rev 29:594–621. https://doi.org/10.1080/07474938.2010.481556

Altunkaynak A, Nigussie TA (2015) Prediction of daily rainfall by a hybrid wavelet-season-neuro technique. J Hydrol 529:287–301. https://doi.org/10.1016/j.jhydrol.2015.07.046

Awadallah MA, Bayoumi EHE, Soliman HM (2009) Adaptive deadbeat controllers for brushless DC drives using PSO and ANFIS techniques. J Electr Eng 60:3–11

Azimi H, Bonakdari H, Ebtehaj I, Michelson DG (2016) A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Comput & Applic. https://doi.org/10.1007/s00521-016-2560-9

Çekmiş A, Hacihasanoǧlu I, Ostwald MJ (2014) A computational model for accommodating spatial uncertainty: predicting inhabitation patterns in open-planned spaces. Build Environ 73:115–126. https://doi.org/10.1016/j.buildenv.2013.11.023

Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? -arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Chang FJ, Chang YT (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour 29:1–10. https://doi.org/10.1016/j.advwatres.2005.04.015

Clements MP, Franses PH, Swanson NR (2004) Forecasting economic and financial time-series with non-linear models. Int J Forecast 20:169–183. https://doi.org/10.1016/j.ijforecast.2003.10.004

Dastorani MT, Moghadamnia A, Piri J, Rico-Ramirez M (2010) Application of ANN and ANFIS models for reconstructing missing flow data. Environ Monit Assess 166:421–434. https://doi.org/10.1007/s10661-009-1012-8

De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22:443–473. https://doi.org/10.1016/j.ijforecast.2006.01.001

Deo RC, Şahin M (2016) An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environ Monit Assess 188(2):90

Dumedah G (2014) Toward essential union between evolutionary strategy and data assimilation for model diagnostics: an application for reducing the search space of optimization problems using hydrologic genome map. Environ Model Softw 69:342–352. https://doi.org/10.1016/j.envsoft.2014.09.025

Ebtehaj I, Bonakdari H (2014) Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers. Water Resour Manag 28(13):4765–4779

El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21:533–556. https://doi.org/10.1007/s11269-006-9027-1

El-Shafie A, Jaafer O, Seyed A (2011) Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int J Phys Sci 6:2875–2888

Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007. https://doi.org/10.2307/1912773

Fahimi F, Yaseen ZM, El-shafie A (2016) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol:1–29. https://doi.org/10.1007/s00704-016-1735-8

Gasim MB, Toriman ME, Idris M et al (2013) River flow conditions and dynamic state analysis of Pahang river. Am J Appl Sci 10:42–57. https://doi.org/10.3844/ajassp.2013.42.57

Ghorbani MA, Shamshirband S, Zare Haghi D et al (2017) Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res 172:32–38. https://doi.org/10.1016/j.still.2017.04.009

Goyal MK, Bharti B, Quilty J et al (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, fuzzy logic, and ANFIS. Expert Syst Appl 41:5267–5276. https://doi.org/10.1016/j.eswa.2014.02.047

Harun Z, Jantan A, Jasin B et al (2014) Pahang River map of river. J Asian Earth Sci 44:177–194. https://doi.org/10.5327/Z23174889201400040002

Hipni A, El-shafie A, Najah A et al (2013) Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive Neuro fuzzy inference system (ANFIS). Water Resour Manag 27:3803–3823. https://doi.org/10.1007/s11269-013-0382-4

Hong Y, Hsu K, Sorooshian S, Gao X (2005) Self-organizing nonlinear output (SONO): a neural network suitable for cloud patch-based rainfall estimation at small scales. Water Resour Res. https://doi.org/10.1029/2004WR003142

Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. https://doi.org/10.1109/21.256541

Kamarian S, Yas MH, Pourasghar A, Daghagh M (2014) Application of firefly algorithm and ANFIS for optimisation of functionally graded beams. J Exp Theor Artif Intell 26:197–209. https://doi.org/10.1080/0952813X.2013.813978

Kaur A, Kaur A (2012) Comparison of Mamdani-type and Sugeno-type fuzzy inference Systems for air Conditioning System. Int J Soft Comput Eng 2:323–325

Ketabchi H, Ataie-Ashtiani B (2015) Evolutionary algorithms for the optimal management of coastal groundwater: a comparative study toward future challenges. J Hydrol 520:193–213. https://doi.org/10.1016/j.jhydrol.2014.11.043

Krishna Kumar K, Hoerling M, Rajagopalan B (2005) Advancing dynamical prediction of Indian monsoon rainfall. Geophys Res Lett 32:1–4. https://doi.org/10.1029/2004GL021979

Legates DR, Mccabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241

McMillan H, Jackson B, Clark M et al (2011) Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models. J Hydrol 400:83–94. https://doi.org/10.1016/j.jhydrol.2011.01.026

Mellit A, Kalogirou SA (2011) ANFIS-based modelling for photovoltaic power supply system: a case study. Renew Energy 36:250–258. https://doi.org/10.1016/j.renene.2010.06.028

Michalski RS, Carbonell JG, Mitchell TM (2013) Machine learning: an artificial intelligence approach. Springer Science \& Business Media, New York

Najah A, El-Shafie A, Karim O, Jaafar O (2012) Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Comput & Applic 21:833–841. https://doi.org/10.1007/s00521-010-0486-1

Nayak D, Mahapatra A, Mishra P (2013) A survey on rainfall prediction using artificial neural network. Int J Comput 72:32–40. https://doi.org/10.5120/12580-9217

Nhu HN, Nitsuwat S, Sodanil M (2013) Prediction of stock price using an adaptive Neuro-fuzzy inference system trained by firefly algorithm. 2013 Int Comput Sci Eng Conf ICSEC 2013, pp 302–307. https://doi.org/10.1109/ICSEC.2013.6694798

Palit AK, Popovic D (2005) Computational intelligence in time series forecasting: theory and engineering applications (advances in industrial control). Springer-Verlag New York, Inc., Secaucus

Poskitt DS, Tremayne AR (1986) The selection and use of linear and bilinear time series models. Int J Forecast 2:101–114. https://doi.org/10.1016/0169-2070(86)90033-6

Prasad R, Deo RC, Li Y, Maraseni T (2017) Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm. Atmos Res 197:42–63

Shamshirband S, Mohammadi K, Tong CW et al (2016) A hybrid SVM-FFA method for prediction of monthly mean global solar radiation. Theor Appl Climatol 125:53–65. https://doi.org/10.1007/s00704-015-1482-2

Sojitra MA, Purohit RC, Pandya PA (2015) Comparative study of daily rainfall forecasting models using adaptive-neuro fuzzy inference system (ANFIS). Curr World Environ 10(2):529

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15:116–132. https://doi.org/10.1109/TSMC.1985.6313399

Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data. J R Stat Soc Ser B 42:245–292

Venkata Ramana R, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network analysis. Water Resour Manag 27:3697–3711. https://doi.org/10.1007/s11269-013-0374-4

Werbos PJ (1988) Generalization of backpropagation with application to a recurrent gas market model. Neural Netw 1:339–356. https://doi.org/10.1016/0893-6080(88)90007-X

Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Biomed Comput 2(2):78–84. https://doi.org/10.1504/IJBIC.2010.032124

Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038

Yaseen ZM, Jaafar O, Deo RC, Kisi O, Adamowski J, Quilty J, El-Shafie A (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol 542:603–614

Zimmer A, Schmidt A, Ostfeld A, Minsker B (2015) Evolutionary algorithm enhancement for model predictive control and real-time decision support. Environ Model Softw 69:330–341. https://doi.org/10.1016/j.envsoft.2015.03.005