Rain-Free and Residue Hand-in-Hand: A Progressive Coupled Network for Real-Time Image Deraining

IEEE Transactions on Image Processing - Tập 30 - Trang 7404-7418 - 2021
Kui Jiang1, Zhongyuan Wang1, Peng Yi1, Chen Chen2, Zheng Wang1, Xiao Wang1, Junjun Jiang3, Chia‐Wen Lin4,5
1National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
2Center for Research in Computer Vision (CRCV), University of Central Florida, Orlando, FL, USA
3Peng Cheng Laboratory, Shenzhen, China
4Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan
5National Tsing Hua University, Hsinchu, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/CVPR.2019.00835

10.1109/ICCV.2017.511

wei, 2018, Deep retinex decomposition for low-light enhancement, Proc BMVC, 155

yu, 2018, BDD100K: A diverse driving dataset for heterogeneous multitask learning, arXiv 1805 04687

10.1609/aaai.v34i07.6701

10.1109/TIP.2018.2867951

10.1109/CVPR42600.2020.00288

10.1109/TIP.2006.877407

10.1609/aaai.v34i07.6865

10.1109/CVPR42600.2020.00324

10.1007/978-3-642-33715-4_54

feifan lv, 2018, MBLLEN: Low-light image/video enhancement using CNNs, Proc BMVC, 220

10.1109/ICCV.2019.00200

mehta, 2018, Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation, Proc ECCV, 552

10.1109/CVPR.2018.00716

10.1109/ICCVW.2017.71

10.1609/aaai.v34i07.6706

eboli, 2020, Structured and localized image restoration, arXiv 2006 09261

sifre, 2014, Rigid-motion scattering for image classification, 1, 3

ding, 2021, RepVGG: Making VGG-style ConvNets great again, arXiv 2101 03697

10.1109/CVPR.2019.00396

10.1109/CVPR.2018.00194

10.1109/CVPR.2018.00068

ding, 2020, Image quality assessment: Unifying structure and texture similarity, arXiv 2004 07728

ioffe, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc ICML, 448

10.1109/CVPR.2019.00400

krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, Proc Adv Neural Inf Process Syst (NIPS), 1097

10.1109/CVPR.2019.00821

redmon, 2018, YOLOv3: An incremental improvement, arXiv 1804 02767

howard, 2017, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv 1704 04861

10.1109/ICCV.2017.322

10.1109/CVPR.2017.549

10.1109/CVPR.2018.00132

10.1109/CVPR.2019.00406

10.1109/CVPR42600.2020.00837

10.1109/TIP.2021.3064229

10.1007/s11263-020-01421-z

10.1007/s11263-020-01428-6

10.1007/s11263-020-01416-w

yang, 2021, End-toend rain removal network based on progressive residual detail supplement, IEEE Trans Multimedia

10.1007/978-3-642-33266-1_8

10.1109/TPAMI.2020.2995190

mei, 2020, Pyramid attention networks for image restoration, arXiv 2004 13824

zamir, 2020, Learning enriched features for real image restoration and enhancement, Proc ECCV, 492

10.1109/TCSVT.2019.2920407

10.1016/j.image.2014.06.006

10.1109/LSP.2012.2227726

10.1109/TCSVT.2020.3044887

10.1109/TPAMI.2020.3042298

10.1109/CVPR.2017.618

zhang, 2018, Image super-resolution using very deep residual channel attention networks, Proc ECCV, 286

wang, 2019, An effective two-branch model-based deep network for single image deraining, arXiv 1905 05404

10.1109/CVPR.2019.00060

ronneberger, 2015, U-net: Convolutional networks for biomedical image segmentation, Proc Conf Med Image Comput Comput -Assist Intervent, 234

10.1109/TPAMI.2015.2439281

10.1109/TIP.2011.2179057

10.1109/TMM.2013.2284759

li, 2017, Single image deraining using scale-aware multi-stage recurrent network, arXiv 1712 06830

10.1109/WACV.2017.145

guo, 2020, Zero-reference deep curve estimation for low-light image enhancement, Proc CVPR, 1777

10.1109/TIP.2020.3048625

10.1109/CVPR.2019.00701

10.1109/CVPR.2017.186

he, 2020, Conditional sequential modulation for efficient global image retouching, Proc ECCV, 12358, 679

10.1109/CVPR.2018.00079

10.1145/3343031.3350926

10.1145/3240508.3240636

10.1109/TIP.2016.2639450

10.1109/TIP.2017.2691802

10.1109/ICCV.2005.253

10.1109/CVPR.2019.00860

10.1007/978-3-030-01234-2_16

10.1109/83.557356

10.1016/j.cviu.2019.05.003

10.1109/CVPR.2019.00941

zhang, 2019, Residual non-local attention networks for image restoration, Proc ICLR, 1

10.1109/TNNLS.2019.2926481

10.1109/CVPR42600.2020.00313

10.1109/CVPR42600.2020.00597

jiang, 2021, Degrade is upgrade: Learning degradation for low-light image enhancement, arXiv 2103 10621

10.1109/TIP.2021.3051462

10.1515/9783110524116

10.1109/TIP.2006.881969

10.1109/TCSVT.2017.2748150

10.1109/TCSVT.2018.2880223