Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer

Advanced Drug Delivery Reviews - Tập 60 Số 12 - Trang 1329-1346 - 2008
Misara Hamoudeh1,2, Muhammad Anas Kamleh3, Roudayna Diab1,2, Hatem Fessi1,2
1Pharmacotechnical department, ISPB facuté de Pharmacie
2Université de Lyon, 69622, France, Université Lyon1, CNRS, UMR 5007, LAGEP
3Strathclyde Institute of Pharmaceutical and Biomedical Sciences, SIPBS, University of Strathclyde, 27 Taylor street, G4 0NR, Glasgow, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

Panchapakesan, 2007, Nanotechnology for sensing, imaging, and treating cancer, Surg. Oncol. Clin. N. Am., 16, 293, 10.1016/j.soc.2007.03.002

Wang, 2007, Nanotechnology for targeted cancer therapy, Exp. Rev. Anticancer Ther., 7, 833, 10.1586/14737140.7.6.833

Brigger, 2002, Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev., 54, 631, 10.1016/S0169-409X(02)00044-3

Gu, 2007, Targeted nanoparticles for cancer therapy, NanoToday, 2, 14, 10.1016/S1748-0132(07)70083-X

Chiannilkulchai, 1990, Hepatic tissue distribution of doxorubicin-loaded nanoparticles after, I.V. administration in reticulosarcoma M 5076 mestastases-bearing mice, Cancer Chemother. Pharmacol., 26, 122, 10.1007/BF02897257

Jiang, 1995, The antihepatoma effect of lyophilized aclacinomycin A polyisobutylcyanoacrylate nanoparticles in vitro and in vivo, Yao Xue Xue Bao, 30, 179

Tröster, 1990, Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants, Int. J. Pharm., 61, 85, 10.1016/0378-5173(90)90047-8

Gref, 1994, Biodegradable long-circulating polymeric microspheres, Science, 263, 1600, 10.1126/science.8128245

Brigger, 2002, Poly(etylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting, J. Pharmacol. Exp. Ther., 303, 928, 10.1124/jpet.102.039669

Brigger, 2004, Negative preclinical results with stealth® nanospheres-encapsulated doxorubicin in an orthotopic murine brain tumor model, J. Control. Release, 100, 29, 10.1016/j.jconrel.2004.07.019

Stella, 2000, Design of folic acid-conjugated nanoparticles for drug targeting, J. Pharm. Sci., 89, 1452, 10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P

P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, J. Kristl. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody, J. Control. Release 120 (1–2) (2007) 18–26.

Zidan, 2006, Formulation of anastrozole microparticles as biodegradable anticancer drug carriers, AAPS Pharm. Sci. Technol., 7, 61, 10.1208/pt070361

Liu, 2004, Steady-state fluorescence study on release of camptothecin from agar hydrogel, Int. J. Pharm., 287, 13, 10.1016/j.ijpharm.2004.08.010

Tewes, 2007, Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods, Eur. J. Pharm. Biopharm., 66, 488, 10.1016/j.ejpb.2007.02.016

Li, 2007, Self-assembled poly(butadiene)-b-fpoly(ethylene oxide) polymersomes as paclitaxel carriers, Biotechnol. Prog., 23, 278, 10.1021/bp060208+

Rueda Dominguez, 2005, Liposomal cytarabine (DepoCyte) for the treatment of neoplastic meningitis, Clin. Transl. Oncol., 7, 232, 10.1007/BF02710168

Bhadra, 2003, A PEGylated dendritic nanoparticulate carrier of fluorouracil, Int. J. Pharm., 257, 111, 10.1016/S0378-5173(03)00132-7

Cutler, 1999, Utilization of metabolic, transport and receptor-mediated processes to deliver agents for cancer diagnosis, Adv. Drug Deliv. Rev., 37, 189, 10.1016/S0169-409X(98)00093-3

Coleman, 2003

Banerjee, 2001, Evolution of Tc-99m in diagnostic radiopharmaceuticals, Semin. Nucl. Med., 31, 260, 10.1053/snuc.2001.26205

Dietlein, 2005, Imaging of central nervous system lymphomas with iodine-123 labeled rituximab, Eur. J. Haematol., 74, 348, 10.1111/j.1600-0609.2004.00401.x

Peters, 1987, The value of indium-labelled leucocytes in clinical practice, Blood Rev., 1, 65, 10.1016/0268-960X(87)90021-X

Konuk, 2002, Orbital gallium-67 scintigraphy in Graves' ophthalmopathy, Thyroid, 12, 603, 10.1089/105072502320288465

Kirby, 2007, The role of FDG PET in the management of lymphoma: practical guidelines, Nucl. Med. Commun., 28, 355, 10.1097/MNM.0b013e3280895e34

Lliakis, 1991, The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells, BioEssays, 13, 641, 10.1002/bies.950131204

Julow, 2007, Stereotactic intracavitary irradiation of cystic craniopharyngiomas with yttrium-90 isotope, Prog. Neurol. Surg., 20, 289, 10.1159/000100172

Sergieva, 2006, Nuclear medicine approaches in the monitoring of thyroid cancer patients, J. BUON., 11, 511

Yaneva, 2005, Radionuclide therapy of cancer patients with bone metastases, Folia Med., 47, 63

van der Poel, 2006, Serum hemoglobin levels predict response to strontium-89 and rhenium-186-HEDP radionuclide treatment for painful osseous metastases in prostate cancer, Urol. Int., 77, 50, 10.1159/000092935

Christoforidou, 2007, Results of a retrospective single institution analysis of targeted skeletal radiotherapy with (166)Holmium-DOTMP as conditioning regimen for autologous stem cell transplant for patients with multiple myeloma. Impact on transplant outcomes, Biol. Blood Marrow Transplant., 13, 543, 10.1016/j.bbmt.2006.12.448

Carr, 2004, Hepatic arterial 90Yttrium glass microspheres (Therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients, Liver Transpl., 10, 107, 10.1002/lt.20036

Gray, 2001, Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer, Ann. Oncol., 12, 1711, 10.1023/A:1013569329846

Kampf, 1988, Induction of DNA double-strand breaks by ionizing radiation of different quality and their relevance for cell inactivation, Radiobiol. Radiother., 29, 631

Gadbois, 1996, Alterations in the progression of cells through the cell cycle after exposure to alpha particles or gamma rays, Radiat. Res., 146, 414, 10.2307/3579303

Geerlings, 1993, The feasibility of 225Ac as a source of alpha-particles in radioimmunotherapy, Nucl. Med. Commun., 14, 121, 10.1097/00006231-199302000-00009

Zhang, 2006, Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25, Blood, 108, 1007, 10.1182/blood-2005-11-4757

Stutchbury, 2007, Preclinical evaluation of 213Bi-labeled plasminogen activator inhibitor type 2 in an orthotopic murine xenogenic model of human breast carcinoma, Mol. Cancer Ther., 6, 203, 10.1158/1535-7163.MCT-06-0264

Torchilin, 2005, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov., 4, 145, 10.1038/nrd1632

Kostarelos, 1999, Liposomes as carriers of radionuclides: from imaging to therapy, J. Liposome res., 9, 429, 10.3109/08982109909035546

Emfietzoglou, 2001, An analytic dosimetry study for the use of radionuclide–liposome conjugates in internal radiotherapy, J. Nucl. Med., 42, 499

Neerunjun, 1977, Fate of a liposome-associated agent injected into normal and tumour-bearing rodents: attempts to improve localization in tumour tissues, Biochem. Soc. Trans., 5, 1380, 10.1042/bst0051380

Richardson, 1977, Properties of [99mTc] technetium-labelled liposomes in normal and tumour-bearing rats, Biochem. Soc. Trans., 5, 290, 10.1042/bst0050290

Ogihara, 1986, Tumor uptake of 67Ga-carrying liposomes, Eur. J. Nucl. Med., 11, 405, 10.1007/BF00261406

Presant, 1988, Successful imaging of human cancer with indium-111-labeled phopholipid vesicles, Cancer, 62, 905, 10.1002/1097-0142(19880901)62:5<905::AID-CNCR2820620509>3.0.CO;2-3

Jaggi, 1991, Liposomes as carriers of technetium-99m glucoheptonate for liver imaging, Int. J. Pharm., 69, 77, 10.1016/0378-5173(91)90089-7

Ogihara-Umeda, 1992, Development of a liposome-encapsulated radionuclide with preferential tumor accumulation—the choice of radionuclide and chelating ligand, Int. J. Rad. Appl. Instrum. B., 19, 753, 10.1016/0883-2897(92)90136-M

Gabizon, 1990, Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies, Cancer Res., 50, 6371

Hnatowich, 1981, Labeling of preformed liposomes with Ga-67 and Tc-99m by chelation, J. Nucl. Med., 22, 810

Goto, 1989, Liposomes prepared from synthetic amphiphiles. I. Their technetium labeling and stability, Chem. Pharm. Bull., 37, 1351, 10.1248/cpb.37.1351

Harrington, 2000, Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies, Br. J. Cancer, 83, 232, 10.1054/bjoc.1999.1232

Richardson, 1979, Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients, Br. J. Cancer, 40, 35, 10.1038/bjc.1979.138

Khalifa, 1997, Liposomal distribution in malignant glioma: possibilities for therapy, Nucl. Med. Commun., 18, 17, 10.1097/00006231-199701000-00005

Turner, 1988, In-111-labelled liposomes: dosimetry and tumour depiction, Radiology, 166, 761, 10.1148/radiology.166.3.3340774

Ogihara-Umeda, 1989, Cholesterol enhances the delivery of liposome-encapsulated gallium-67 to tumors, Eur. J. Nucl. Med., 15, 612, 10.1007/BF00256940

Ogihara-Umeda, 1988, Increased delivery of gallium-67 to tumors using serum-stable liposomes, J. Nucl. Med., 29, 516

Harrington, 1996, Biodistribution and pharmacokinetics of In-111-labeled stealth® liposomes in patients with solid tumours, J. Nucl. Med., 37, 54

Harrington, 2001, Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes, Clin. Cancer Res., 7, 243

Harrington, 2000, Pegylated liposome-encapsulated doxorubicin and cisplatin enhance the effect of radiotherapy in a tumor xenograft model, Clin. Cancer Res., 6, 4939

Ogihara-Umeda, 1996, Optimal radiolabeled liposomes for tumor imaging, J. Nucl. Med., 37, 326

Phillips, 1999, Delivery of gamma-imaging agents by liposomes, Adv. Drug Deliv. Rev., 37, 13, 10.1016/S0169-409X(98)00108-2

Udayachander, 1987, Tumor targeting potential of liposomes encapsulating Ga-67 and antibody to Dalton's lymphoma associated antigen (anti-DLAA), Int. J. Radiat. Oncol. Biol. Phys., 13, 1713, 10.1016/0360-3016(87)90168-4

Goins, 1994, Use of technetium-99m-liposomes in tumor imaging, J. Nucl. Med., 35, 1491

Bao, 2006, Potential use of drug carried-liposomes for cancer therapy via direct intratumoral injection, Int. J. Pharm., 316, 162, 10.1016/j.ijpharm.2006.02.039

Wang, 2006, Internal radiotherapy and dosimetric study for 111In/177Lu-pegylated liposomes conjugates in tumor-bearing mice, Nucl. Instrum. Meth. A, 569, 533, 10.1016/j.nima.2006.08.124

Ogihara-Umeda, 1994, Rapid tumor imaging by active background reduction using biotin-bearing liposomes and avidin, Cancer Res., 54, 463

Elbayoumi, 2006, Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies, Eur. J. Nucl. Med. Mol. Imaging, 33, 1196, 10.1007/s00259-006-0139-x

Geng, 2004, Radiation-guided drug delivery to tumor blood vessels results in improved tumor growth delay, J. Control. Release, 99, 369, 10.1016/j.jconrel.2004.07.024

Dagar, 2001, VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery, J. Control. Release, 74, 129, 10.1016/S0168-3659(01)00326-1

Dagar, 2003, VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies, J. Control. Release, 91, 123, 10.1016/S0168-3659(03)00242-6

Oku, 1996, In vivo trafficking of long-circulating liposomes in tumour-bearing mice determined by positron emission tomography, Biopharm. Drug. Dispos., 17, 435, 10.1002/(SICI)1099-081X(199607)17:5<435::AID-BDD435>3.0.CO;2-K

Oku, 1996, Effect of serum protein binding on real-time trafficking of liposomes with different charges analyzed by positron emission tomography, Biochim. Biophys. Acta, 1280, 149, 10.1016/0005-2736(95)00283-9

Oku, 1999, Delivery of contrast agents for positron emission tomography imaging by liposomes, Adv. Drug Deliv. Rev., 37, 53, 10.1016/S0169-409X(98)00110-0

Oku, 2005, Glucuronate-modified, long-circulating liposomes for the delivery of anticancer agents, Methods Enzymol., 391, 145, 10.1016/S0076-6879(05)91008-2

Kondo, 2004, Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase, Int. J. Cancer., 108, 301, 10.1002/ijc.11526

Kunstfeld, 2003, Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model, J. Invest. Dermatol., 120, 476, 10.1046/j.1523-1747.2003.12057.x

Wang, 2005, Radiosensitivity of human colon cancer cell enhanced by immunoliposomal docetaxel, World J. Gastroenterol., 11, 4003, 10.3748/wjg.v11.i26.4003

Häfeli, 1991, A lipophilic complex with 186Re/188Re incorporated in liposomes suitable for radiotherapy, Int. J. Rad. Appl. Instrum. B., 18, 449, 10.1016/0883-2897(91)90104-S

Utkhede, 1994, Uptake of yttrium-90 into lipid vesicles, J. Liposome Res., 4, 1049, 10.3109/08982109409018621

Syme, 2003, Dosimetric model for intraperitoneal targeted liposomal radioimmunotherapy of ovarian cancer micrometastases, Phys Med Biol., 48, 1305, 10.1088/0031-9155/48/10/305

Emfietzoglou, 2005, Liposome-mediated radiotherapeutics within avascular tumor spheroids: comparative dosimetry study for various radionuclides, liposome systems, and a targeting antibody, J. Nucl. Med., 46, 89

Kostarelos, 2000, Tissue dosimetry of liposome-radionuclide complexes for internal radiotherapy: toward liposome-targeted therapeutic radiopharmaceuticals, Anticancer Res., 20, 3339

Kostarelos, 2001, An analytic dosimetry study for the use of radionuclide–liposome conjugates in internal radiotherapy, J. Nucl. Med., 42, 499

Henriksen, 2004, Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides, Nucl. Med. Bio., 31, 441, 10.1016/j.nucmedbio.2003.11.004

Sofou, 2004, Engineered liposomes for potential alpha-particle therapy of metastatic cancer, J. Nucl. Med., 45, 253

Lee, 2007, Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy, Org. Lett., 9, 323, 10.1021/ol062840+

Pan, 2002, Boron delivery to a murine lung carcinoma using folate receptor-targeted liposomes, Anticancer Res., 22, 1629

Pan, 2002, Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy, Bioconjug. Chem., 13, 435, 10.1021/bc015557y

Moraes, 1999, Preparation and characterization of liposomal systems entrapping the boronated compound o-carboranylpropylamine, J. Microencapsul., 16, 647, 10.1080/026520499288834

Yanagië, 1991, Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model, Br. J. Cancer., 63, 522, 10.1038/bjc.1991.124

Yanagie, 1997, Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy, Br. J. Cancer, 75, 660, 10.1038/bjc.1997.118

Shelly, 1992, Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes, Proc. Natl. Acad. Sci. U.S.A., 89, 9039, 10.1073/pnas.89.19.9039

Mehta, 1996, Liposomal formulations containing sodium mercaptoundecahydrododecaborate (BSH) for boron neutron capture therapy, J. Microencapsul., 13, 269, 10.3109/02652049609026015

Yanagie, 2006, Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model, Biomed. Pharmacother., 60, 43, 10.1016/j.biopha.2005.05.011

Ke, 2004, Folate-receptor-targeted radionuclide imaging agents, Adv. Drug Deliv. Rev., 56, 1143, 10.1016/j.addr.2004.01.004

Stephenson, 2003, Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy, Anticancer Res., 23, 3341

Conzone, 2004, Biodegradable radiation delivery system utilizing glass microspheres and ethylenediaminetetraacetate chelation therapy, J. Biomed. Mater. Res. A., 70, 256, 10.1002/jbm.a.30076

Hendlisz, 2006, Hepatic intra-arterial injection of Yttrium-loaded microspheres for liver metastasis secondary to colorectal cancer: best soups are sometimes made from old recipies, Acta Gastroenterol. Belg., 69, 55

Ariel, 1965, Treatment of inoperable primary pancereatic and liver cancer by the intra-arterial administration of radioactive isotopes (90Y radiation microspheres), Ann. Surg., 162, 267, 10.1097/00000658-196508000-00018

Hafeli, 2007, Fibrin glue system for adjuvant brachytherapy of brain tumors with 188Re and 186Re-labeled microspheres, Eur. J. Pharm. Biopharm., 65, 282, 10.1016/j.ejpb.2006.10.016

Nijsen, 2007, The bright future of radionuclides for cancer therapy, Anti-Cancer Agents Med. Chem., 7, 271, 10.2174/187152007780618207

Mock, 1999, Measurement of circulating red cell volume using biotin-labeled red cells: validation against 51Cr-labeled red cells, Transfusion, 39, 149, 10.1046/j.1537-2995.1999.39299154728.x

Valk, 1984, Measurement of splenic function with heat-damaged RBCs: effect of heating conditions: concise communication, J. Nucl. Med., 25, 965

van Montfrans, 2004, In vivo evaluation of 111In-labeled T-lymphocyte homing in experimental colitis, J. Nucl. Med., 45, 1759

Hughes, 2003, Nuclear medicine and infection detection: the relative effectiveness of imaging with 111In-oxine-, 99mTc-HMPAO-, and 99mTc-stannous fluoride colloid-labeled leukocytes and with 67Ga-citrate, J. Nucl. Med. Technol., 31, 196

Wang, 2002, In-111-labeled platelet scintigraphies in patients with chronic hepatitis C, Hepatogastroenterology, 49, 1066

Knight, 1978, Comparison of In-111-labeled platelets and iodinated fibrinogen for the detection of deep vein thrombosis, J. Nucl. Med., 19, 891

Wadenvik, 1987, In vitro and in vivo behavior of 111In-labelled platelets: an experimental study of healthy male volunteers, Eur. J. Haematol., 38, 415, 10.1111/j.1600-0609.1987.tb01438.x

Even, 1989, Gallium-68-labeled macroaggregated human serum albumin, 68Ga-MAA, Int. J. Rad. Appl. Instrum. B., 16, 319, 10.1016/0883-2897(89)90014-7

Okada, 1990, Estimation of the reticuloendothelial function by positron emission computed tomography (PET) study in chronic liver disease, Nippon Shokakibyo Gakkai Zasshi, 87, 90

Zielhuis, 2007, Characterization of holmium loaded alginate microspheres for multimodality imaging and therapeutic applications, J. Biomed. Mater. Res. A., 82, 892, 10.1002/jbm.a.31183

Mariani, 2001, Intratumoral arteriovenous shunting in malignant gliomas, Neurosurgery, 48, 357, 10.1097/00006123-200102000-00022

Walser, 1996, Diagnostic angioscintigraphic evaluation of malignant hepatic tumors before catheter embolization: determination of shunt, flow distribution, and reflux, Cardiovasc. Intervent. Radiol., 19, 77, 10.1007/BF02563897

Armenise, 1968, Value of brain scintigraphy using MAA-I-131 injected into the carotid artery, Acta Neurochir., 19, 139, 10.1007/BF01402256

Briz Kanafani, 1969, Perfusion I-131 macroaggregate brain scanning: a clinical evaluation of its diagnostic efficiency, Am. J. Roentgenol. Radium. Ther. Nucl. Med., 106, 333, 10.2214/ajr.106.2.333

Murthy, 2006, Trans-arterial hepatic radioembolisation of yttrium-90 microspheres, Biomed. Imaging Intervention J., 2 (3), e43

Lambert, 2005, Treatment of hepatocellular carcinoma by means of radiopharmaceuticals, Eur. J. Nucl. Med. Mol. Imaging, 32, 980, 10.1007/s00259-005-1859-z

Kaplan, 1980, Radionuclide angiography to predict patient response to hepatic artery chemotherapy, Cancer Treat. Rep., 64, 1217

Ensminger, 1981, Totally implanted drug delivery system for hepatic arterial chemotherapy, Cancer Treat. Rep., 65, 393

Muller, 1963, Curative aim and results of routine intraperitoneal radiocolloid administration in the treatment of ovarian cancer, Am. J. Roentgenol. Radium. Ther. Nucl. Med., 89, 533

Muller, 1963, The treatment of cancer of the ovaries. Its improvement by intraperitoneal administration of radioactive colloidal gold, Rev. Fr. Gynecol. Obstet., 58, 197

Karim, 2006, Nonabsorbable radioactive material in the treatment of carcinomas by local injections, Cancer, 61, 931

Kobeiter, 2007, Targeted transarterial therapy of Vx-2 rabbit liver tumor with Yttrium-90 labeled ferromagnetic particles using an external magnetic field, Anticancer Res., 27, 755

Carretero, 2007, Gastroduodenal injury after radioembolization of hepatic tumors, Am. J. Gastroenterol., 102, 1216, 10.1111/j.1572-0241.2007.01172.x

Hafeli, 1994, Magnetically directed poly(lactic acid) 90Y-microspheres: novel agents for targeted intracavitary radiotherapy, J. Biomed. Mater. Res., 28, 901, 10.1002/jbm.820280809

Hafeli, 1995, Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results, Nucl. Med. Biol., 22, 147, 10.1016/0969-8051(94)00124-3

Wunderlich, 2000, Preparation and biodistribution of rhenium-188 labeled albumin microspheres B20: a promising new agent for radiotherapy, Appl. Radiat. Isot., 52, 63, 10.1016/S0969-8043(99)00093-7

Nijsen, 2001, Characterization of poly(l-lactic acid) microspheres loaded with holmium acetylacetonate, Biomaterials, 22, 3073, 10.1016/S0142-9612(01)00055-2

Mumper, 1991, Neutron-activated holmium-166-poly (l-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors, J. Nucl. Med., 32, 2139

Hamoudeh, 2007, Preparation and characterization of radioactive dirhenium decacarbonyl-loaded PLLA nanoparticles for radionuclide intra-tumoral therapy, Eur. J. Pharm. Biopharm., 67, 597, 10.1016/j.ejpb.2007.04.003

Kennedy, 2004, Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers, Int. J. Radiat. Oncol. Biol. Phys., 60, 1552, 10.1016/j.ijrobp.2004.09.004

Kennedy, 2006, Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience, Int. J. Radiat. Oncol. Biol. Phys., 65, 412, 10.1016/j.ijrobp.2005.12.051

Salem, 2006, Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: a review, Int. J. Radiat. Oncol. Biol. Phys., 66, S83, 10.1016/j.ijrobp.2006.02.061

Conzone, 1998, Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy, J. Biomed. Mater. Res., 42, 617, 10.1002/(SICI)1097-4636(19981215)42:4<617::AID-JBM19>3.0.CO;2-4

Häfeli, 1999, Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres, Int. J. Radiat. Oncol. Biol. Phys., 44, 189, 10.1016/S0360-3016(98)00554-9

Herba, 2002, Radioembolization for hepatic metastases, Semin. Oncol., 29, 152, 10.1053/sonc.2002.31672

Harbert, 1996, Radiocolloid therapy of cystic brain tumors, 1083

Backlund, 1989, Colloidal radioisotopes as part of a multi-modality treatment of craniopharyngiomas, J. Neurosurg. Sci., 33, 95

Breedis, 1954, The blood supply of neoplasms in the liver, Am. J. Pathol., 30, 969

Ackerman, 1970, The blood supply of experimental liver metastases I: the distribution of hepatic artery and portal vein blood to “small” and “large” tumors, Surgery, 66, 1067

Geschwind, 2004, Yttrium-90 microspheres for the treatment of hepatocellular carcinoma, Gastroenterology, 127, 194, 10.1053/j.gastro.2004.09.034

Houle, 1989, Hepatocellular carcinoma: pilot trial of treatment with Y-90 microspheres, Radiology, 172, 857, 10.1148/radiology.172.3.2549567

Shepherd, 1992, A phase I dose escalation trial of yttrium-90 microspheres in the treatment of primary hepatocellular carcinoma, Cancer, 70, 2250, 10.1002/1097-0142(19921101)70:9<2250::AID-CNCR2820700906>3.0.CO;2-4

Ehrhardt, 1987, Therapeutic use of 90Y microspheres, Int. J. Rad. Appl. Instrum. B., 14, 233, 10.1016/0883-2897(87)90047-X

Ho, 1998, Internal radiation therapy for patients with primary or metastatic hepatic cancer, Cancer, 83, 1894, 10.1002/(SICI)1097-0142(19981101)83:9<1894::AID-CNCR4>3.0.CO;2-O

Wollner, 1988, Effects of hepatic arterial yttrium 90 glass microspheres in dogs, Cancer, 61, 1336, 10.1002/1097-0142(19880401)61:7<1336::AID-CNCR2820610711>3.0.CO;2-K

Lewandowski, 2005, 90Y microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: response to treatment at targeted doses of 135–150 Gy as measured by [18F] fluorodeoxyglucose positron emission tomography and computed tomographic imaging, J. Vasc. Interv. Radiol., 16, 1641, 10.1097/01.RVI.0000179815.44868.66

Goin, 2005, Treatment of unresectable hepatocellular carcinoma with intrahepatic yttrium 90 microspheres: factors associated with liver toxicities, J. Vasc. Interv. Radiol., 16, 205, 10.1097/01.RVI.00001142592.89564.F9

Liu, 1999, Clinical and experimental study on regional administration of phosphorus 32 microspheres in treating hepatic carcinoma, World J. Gastroenterol., 5, 492, 10.3748/wjg.v5.i6.492

Schubiger, 1991, 90Y-resin particles—animal experiments on pigs with regard to the introduction of superselective embolization therapy, Int. J. Rad. Appl. Instrum. B., 18, 305, 10.1016/0883-2897(91)90126-6

Zimmermann, 1995, Renal pathology after arterial yttrium-90 microsphere administration in pigs. A model for superselective radioembolization therapy, Invest. Radiol., 30, 716, 10.1097/00004424-199512000-00005

Turner, 1994, 166Ho-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig, Nucl. Med. Comm., 15, 45, 10.1097/00006231-199407000-00009

Murthy, 2005, Yttrium 90 resin microspheres for the treatment of unresectable colorectal hepatic metastases after failure of multiple chemotherapy regimens: preliminary results, J. Vasc. Interv. Radiol., 16, 937, 10.1097/01.RVI.0000161142.12822.66

Rhodes, 1969, Radioactive albumin microspheres for studies of the pulmonary circulation, Radiology, 92, 1453, 10.1148/92.7.1453

Wunderlich, 2005, A kit for labeling of [188Re] human serum albumin microspheres for therapeutic use in nuclear medicine, Appl Radiat Isot., 62, 915, 10.1016/j.apradiso.2005.01.001

Wunderlich, 2005, Labeling and biodistribution of different particle materials for radioembolization therapy with 188Re, Appl. Radiat. Isot., 62, 745, 10.1016/j.apradiso.2004.11.003

Mumper, 1992, Poly(l-lactic acid) microspheres containing neutron-activatable Holmium-165: a study of the physical characteristics of microspheres before and after irradiation in a nuclear reactor, Pharm. Res., 9, 149, 10.1023/A:1018908600711

Mumper, 1992, Polymeric microspheres for radionuclide synovectomy containing neutron-activated Holmium-166, J. Nucl. Med., 33, 398

Häfeli, 2001, Stability of biodegradable radioactive rhenium (Re-186 and Re-188) microspheres after neutron-activation, Appl. Radiat. Isot., 54, 869, 10.1016/S0969-8043(00)00313-4

Nijsen, 2002, Influence of neutron irradiation on holmium acetylacetonate loaded poly(l-lactic acid) microspheres, Biomaterials, 23, 1831, 10.1016/S0142-9612(01)00309-X

van Es, 2001, Tumour embolization of the Vx2 rabbit head and neck cancer model with Dextran hydrogel and Holmium-poly(l-lactic acid) microspheres: a radionuclide and histological pilot study, J. Craniomaxillofac. Surg., 29, 289, 10.1054/jcms.2001.0234

Vergote, 1992, Distribution of intraperitoneally injected microspheres labeled with the alpha-emitter astatine (211At) compared with phosphorus (32P) and yttrium (90Y) colloids in mice, Gynecol. Oncol., 47, 358, 10.1016/0090-8258(92)90140-E

Vergote, 1992, Therapeutic efficacy of the alpha-emitter 211At bound on microspheres compared with 90Y and 32P colloids in a murine intraperitoneal tumor model, Gynecol. Oncol., 47, 366, 10.1016/0090-8258(92)90141-5

Larsen, 1995, Alpha-particle radiotherapy with 211At-labeled monodisperse polymer particles, 211At-labeled IgG proteins, and free 211At in a murine intraperitoneal tumor model, Gynecol. Oncol., 57, 9, 10.1006/gyno.1995.1093

Larsen, 1994, Inactivation of human osteosarcoma cells in vitro by 211At-TP-3 monoclonal antibody: comparison with astatine-211-labeled bovine serum albumin, free astatine-211 and external-beam X rays, Radiat. Res., 139, 178, 10.2307/3578662

Wunderlich, 1986, Animal studies on the in vivo stability of 211At-labelled albumin particles, Nucl. Med. Commun., 7, 211, 10.1097/00006231-198604000-00002

Wunderlich, 1997, Two ways to establish potential At-211 radiopharmaceuticals, Anticancer Res., 17, 1809

Bredow, 2004, Therapy of malignant ascites in vivo by 211At-labelled microspheres, Nuklearmedizin, 43, 63, 10.1055/s-0038-1624060

Rotmensch, 1989, Development of α-emitting radionuclide lead-212 for the potential treatment of ovarian carcinoma, Am. J. Obstet. Gynecol., 60, 789, 10.1016/0002-9378(89)90293-7

Rotmensch, 1989, The effect of the α-emitting radionuclide lead-212 on human ovarian carcinoma: a potential new form of therapy, Gynecol. Oncol., 32, 236, 10.1016/S0090-8258(89)80040-X

Hafeli, 1992, Polymeric radiopharmaceutical delivery systems, Radioact. Radiochem., 3, 11

Owen, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010

Woodle, 1992, Prolonged systemic delivery of peptide drugs by longcirculating liposomes. Illustrations with vasopressin in the Brattleboro rat, Pharm. Res., 9, 260, 10.1023/A:1018953810705

Gabizon, 2004, Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates, Adv. Drug Deliv. Rev., 56, 1177, 10.1016/j.addr.2004.01.011

Ghanem, 1993, Labelled polycyanoacrylate nanoparticles for human in vivo use, Appl. Radiat. Isot., 44, 1219, 10.1016/0969-8043(93)90068-L

Douglas, 1986, Biodistribution of poly (butyl 2 cyanoacrylate) nanoparticles in rabbits, Int. J. Pharm., 34, 145, 10.1016/0378-5173(86)90021-9

Banerjee, 2005, Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles, Int. J. Pharm., 289, 189, 10.1016/j.ijpharm.2004.09.022

Videira, 2002, Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles, J. Drug Target., 10, 607, 10.1080/1061186021000054933

Reddy, 2004, Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies, AAPS J., 6, e23, 10.1208/aapsj060323

Ballot, 2006, 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution, Eur. J. Nucl. Med. Mol. Imaging, 33, 602, 10.1007/s00259-005-0007-0

D. Hallahan, L. Geng, S. Qu, C. Scarfone, T. Giorgio, E. Donnelly, X. Gao1, J. Clanton. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3 (1) (2003) 63-74.

Hu, 2007, Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles, Int. J. Cancer, 120, 1951, 10.1002/ijc.22581

Li, 2002, Combined vascular targeted imaging and therapy: a paradigm for personalized treatment, J. Cell Biochem. Suppl., 39, 65, 10.1002/jcb.10401

Li, 2004, A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles, J. Radiat. Oncol. Biol. Phys., 58, 1215, 10.1016/j.ijrobp.2003.10.057

C. Rubbia. Resonance Enhanced Neutron Captures for Element Activation and Waste Transmutation. (report of Cern/LHC/97-04).

M. Hamoudeh, H. Fessi, H. Mehier, A. Al Faraj, E. Canet-Soulas. Dirhenium decacarbonyl-loaded PLLA nanoparticles: influence of neutron irradiation and preliminary in vivo administration by the TMT technique. Int. J. Pharm. 348 (1–2) (2008) 125–136.

Chunfu, 2004, Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy, Appl. Radiat. Isot., 61, 1255, 10.1016/j.apradiso.2004.03.114

Zhang, 2005, Synthesis of polyacrylamide modified magnetic nanoparticles and radiolabeling with 188Re for magnetically targeted radiotherapy, J. Magn. Magn. Mater., 293, 193, 10.1016/j.jmmm.2005.01.086

Cao, 2004, Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy, J. Magn. Magn. Mater., 277, 165, 10.1016/j.jmmm.2003.10.022

Hafeli, 2004, Magnetically modulated therapeutic systems, Int. J. Pharm., 277, 19, 10.1016/j.ijpharm.2003.03.002

S. Liang, Y. Wang, J. Yu, C. Zhang, J. Xia, D. Yin. Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy, J. Mater. Sci. Mater. Med. 18 (12) (2007) 2297–302.

Shikata, 2002, In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer, Eur. J. Pharm. Biopharm., 53, 57, 10.1016/S0939-6411(01)00198-9

Watanabe, 2002, Tumor accumulation of gadolinium in lipid-nanoparticles intravenously injected for neutron-capture therapy of cancer, Eur. J. Pharm. Biopharm., 54, 119, 10.1016/S0939-6411(02)00085-1

Oyewumi, 2004, Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice, J. Control. Release, 95, 613, 10.1016/j.jconrel.2004.01.002

Mortensen, 2006, Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy, Appl. Radiat. Isot., 64, 315, 10.1016/j.apradiso.2005.08.003

Tokumitsu, 2000, Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor, Cancer Lett., 150, 177, 10.1016/S0304-3835(99)00388-2

Ichikawa, 2007, Formulation considerations of gadolinium lipid nanoemulsion for intravenous delivery to tumors in neutron-capture therapy, Curr. Drug Deliv., 4, 131, 10.2174/156720107780362294

Tokumitsu, 1999, Chitosan–gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization, Pharm. Res., 16, 1830, 10.1023/A:1018995124527

Jones, 1999, Polymeric micelles: a new generation of colloidal drug carriers, Eur. J. Pharm. Biopharm., 48, 101, 10.1016/S0939-6411(99)00039-9

Zhang, 1996, Development of amphiphilic diblock copolymers as micellar carriers of taxol, Int. J. Pharm., 132, 195, 10.1016/0378-5173(95)04386-1

Yokoyama, 1990, Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adryamicin-conjugated pol(ethylene glycol)-poly(aspartic acid) block copolymer, Cancer Res., 50, 1700

Yokoyama, 1996, Introduction of cisplatin into polymeric micelles, J. Control. Release, 39, 351, 10.1016/0168-3659(95)00165-4

Trubetskoy, 1996, Stable polymeric micelles: lymphangiographic contrast media for gamma scintigraphy and magnetic resonance imaging, Acad. Radiol., 3, 232, 10.1016/S1076-6332(96)80448-X

Paduano, 2007, Peptides and Gd complexes containing colloidal assemblies as tumor specific contrast agents in MRI: physicochemical characterization, Biophys. J., 93, 1736, 10.1529/biophysj.107.107417

Nakamura, 2006, A polymeric micelle MRI contrast agent with changeable relaxivity, J. Control. Release, 114, 325, 10.1016/j.jconrel.2006.05.030

Trubetskoy, 1996, Polyethyleneglycol based micelles as carriers of therapeutic and diagnostic agents, S.T.P. Pharma. Sci., 6, 79

Reddy, 2006, Enhanced delivery of etoposide to Dalton's lymphoma in mice through polysorbate 20 micelles, Acta Pharm., 56, 143

Trubetskoy, 1997, Block copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of a long circulating particulate contrast medium for X-ray computed tomography, J. Drug Target., 4, 381, 10.3109/10611869709017895

Torchilin, 1999, CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles, Acad. Radiol., 6, 61, 10.1016/S1076-6332(99)80063-4

Grant, 1989, A liposomal MRI contrast agent: phosphatidyl ethanolamine, Magn. Res. Med., 11, 236, 10.1002/mrm.1910110211

Kabalka, 1989, Gadolinium-labeled liposomes containing paramagnetic amphipathic agents: targeted MRI contrast agent for the liver, Magn. Res. Med., 8, 89, 10.1002/mrm.1910080111

Trubetskoy, 1994, New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes, J. Liposome Res., 4, 961, 10.3109/08982109409018613

Torchilin, 2002, PEG-based micelles as carriers of contrast agents for different imaging modalities, Adv. Drug Deliv. Rev., 54, 235, 10.1016/S0169-409X(02)00019-4

Dufès, 2005, Dendrimers in gene delivery, Adv. Drug Deliv. Rev., 57, 2177, 10.1016/j.addr.2005.09.017

Patri, 2005, Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex, Adv. Drug Deliv. Rev., 57, 2203, 10.1016/j.addr.2005.09.014

Kobayashi, 2000, Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity, Eur. J. Nucl. Med., 27, 1334, 10.1007/s002590000293

Kobayashi, 1999, Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody, Bioconjug, Chem., 10, 103, 10.1021/bc980091d

Sato, 2001, Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice, Clin. Cancer Res., 7, 3606

Barth, 2005, Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy, Mol. Cancer Ther., 4, 1423

Backer, 2005, Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature, Mol. Cancer Ther., 4, 1423, 10.1158/1535-7163.MCT-05-0161

Capala, 1996, Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors, Bioconjug. Chem., 7, 7, 10.1021/bc950077q

Yang, 1997, Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors, Cancer Res., 57, 4333

Yang, 2004, Boronated epidermal growth factor as a delivery agent for neutron capture therapy of EGFR positive gliomas, Appl. Radiat. Isot., 61, 981, 10.1016/j.apradiso.2004.05.071

Kumar, 2004, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 104, 6017, 10.1021/cr030441b

Huh, 2005, Therapeutic effects of Holmium-166 chitosan complex in rat brain tumor model, Yonsei Med. J., 46, 51, 10.3349/ymj.2005.46.1.51

Cho, 2005, A pilot study of trans-arterial injection of 166Holmium–Chitosan complex for treatment of small hepatocellular carcinoma, Yonsei Med. J., 46, 799, 10.3349/ymj.2005.46.6.799

Kim, 2006, Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with holmium-166/chitosan complex (Milican) for the treatment of small hepatocellular carcinoma, Clin. Cancer Res., 12, 543, 10.1158/1078-0432.CCR-05-1730

Azab, 2006, Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis, J. Control. Release, 111, 281, 10.1016/j.jconrel.2005.12.014

Moon, 2004, Perivascular delivery of losartan with surgical fibrin glue prevents neointimal hyperplasia after arterial injury, J. Vasc. Surg., 40, 130, 10.1016/j.jvs.2004.02.031

Erzurum, 2003, R136K fibroblast growth factor-1 mutant induces heparin-independent migration of endothelial cells through fibrin glue, J. Vasc. Surg., 37, 1075, 10.1067/mva.2003.177

Azhdarinia, 2005, Regional radiochemotherapy using in situ hydrogel, Pharm. Res., 22, 776, 10.1007/s11095-005-2594-7