Radiological modeling of the impacts of the Chernobyl nuclear power plant accident on Turkey and southwest Asia
Tài liệu tham khảo
Abagyan, 1986, Information on the accident at the Chernobyl nuclear power station and its consequences prepared for IAEA, Sov. At. Energy, 61, 845, 10.1007/BF01122262
Akçay, 1988, Radioactive pollution of Turkish biotas one year after the Chernobyl accident, J. Radioanal. Nucl. Chem. Lett., 128, 273, 10.1007/BF02166951
Akçay, 2021, On the 30th anniversary of the Chernobyl Nuclear Power Plant Accident, assessment of the activity concentrations and the radiological hazard parameters of soil samples collected from Rize province and districts, Appl. Radiat. Isot., 168, 10.1016/j.apradiso.2020.109435
Albergel, 1988, The chernobyl accident: modelling of dispersion over europe of the radioactive plume and comparison with air activity measurements, Atmos. Environ., 22, 2431, 10.1016/0004-6981(88)90475-1
Balonov, 2000, Methodology of internal dose reconstruction for a Russian population after the Chernobyl accident, Radiat. Protect. Dosim., 92, 247, 10.1093/oxfordjournals.rpd.a033278
Bilgiç, 2020, Dose and risk estimation of Cs-137 and I-131 released from a hypothetical accident in Akkuyu Nuclear Power Plant, J. Environ. Radioact., 211, 10.1016/j.jenvrad.2019.106082
Brandt, 2002, Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model, Atmos. Chem. Phys., 2, 397, 10.5194/acp-2-397-2002
Cardis, 2006, Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident, Int. J. Cancer, 119, 1224, 10.1002/ijc.22037
Celik, 2009, Natural and artificial radioactivity measurements in Eastern Black Sea region of Turkey, J. Hazard Mater., 162, 146, 10.1016/j.jhazmat.2008.05.017
Davoine, 2007, Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport, Atmos. Chem. Phys., 7, 1549, 10.5194/acp-7-1549-2007
De Cort, 1998, Atlas of caesium 137 deposition on europe after the chernobyl accident
Devell, 1995
Eckerman, 1993
El Samad, 2007, Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident, J. Environ. Radioact., 92, 72, 10.1016/j.jenvrad.2006.09.008
Evangeliou, 2013, Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution, Atmos. Chem. Phys., 13, 7183, 10.5194/acp-13-7183-2013
Evangeliou, 2017, Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements, Atmos. Chem. Phys., 17, 8805, 10.5194/acp-17-8805-2017
Evangeliou, 2016, Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe, Environ. Pollut., 216, 408, 10.1016/j.envpol.2016.05.030
Golikov, 1993
Gudiksen, 1989, Chernobyl source term, atmospheric dispersion, and dose estimation, Health Phys., 57, 697, 10.1097/00004032-198911000-00001
Hass, 1990, Simulation of the chernobyl radioactive cloud over Europe using the eurad model, Atmos. Environ. Part A, Gen. Top., 24, 673, 10.1016/0960-1686(90)90022-F
2006
1992
2020
2017
1995
Köse, 1994, The levels of cesium radionuclides in lichens in the eastern Black sea area of Turkey, Toxicol. Environ. Chem., 45, 221, 10.1080/02772249409358087
Lange, 1988, Dose estimates from the chernobyl accident, Nucl. Technol., 82, 311, 10.13182/NT88-A34132
Marouf, 1992, Gamma radiation dose to the Iraqui population due to the Chernobyl accident, Radiat. Protect. Dosim., 42, 55
Min, 2018, Environmental impact on the Korean peninsula due to hypothetical accidental scenarios at the Haiyang nuclear power plant in China, Prog. Nucl. Energy, 105, 254, 10.1016/j.pnucene.2018.01.012
Othman, 1990, The impact of the chernobyl accident on Syria, J. Radiol. Prot., 10, 103, 10.1088/0952-4746/10/2/003
Persson, 1987, The Chernobyl accident - a meteorological analysis of how radionuclides reached and were deposited in Sweden, Ambio, 16, 20
Pisso, 2019, The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci, Model Dev, 12, 4955, 10.5194/gmd-12-4955-2019
Samad, 2013, Determination of natural and artificial radioactivity in soil at North Lebanon province, J. Environ. Radioact., 125, 36, 10.1016/j.jenvrad.2013.02.010
1986, The accident at the chernobyl nuclear power plant and its consequences, 25
Seibert, 2013
Simsek, 2014, Simulation of 137Cs transport and deposition after the chernobyl nuclear power plant accident and radiological doses over the anatolian peninsula, Sci. Total Environ., 499, 74, 10.1016/j.scitotenv.2014.08.038
Srinivas, 2014, Assessment of atmospheric dispersion and radiological impact from the Fukushima accident in a 40-km range using a simulation approach, Air Qual. Atmos. Heal., 7, 209, 10.1007/s11869-014-0241-3
Srinivas, 2005, A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site, Atmos. Environ., 39, 1497, 10.1016/j.atmosenv.2004.11.016
Stohl, 2005, Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461, 10.5194/acp-5-2461-2005
Stohl, 1998, Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data, Atmos. Environ., 32, 4245, 10.1016/S1352-2310(98)00184-8
Stohl, 2012, Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313, 10.5194/acp-12-2313-2012
Stohl, 1999, A density correction for Lagrangian particle dispersion models, Boundary-Layer Meteorol., 90, 155, 10.1023/A:1001741110696
2007
Talerko, 2005, Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident, J. Environ. Radioact., 78, 311, 10.1016/j.jenvrad.2004.04.008
Talerko, 2005, Reconstruction of 131I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling, J. Environ. Radioact., 84, 343, 10.1016/j.jenvrad.2005.04.005
Terada, 2008, Development of an atmospheric dispersion model for accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the chernobyl nuclear accident, J. Nucl. Sci. Technol., 45, 920, 10.1080/18811248.2008.9711493
2000
1988
Varinlioğlu, 1997, Deposition of the radiocaesium in soil at the Black Sea coastal area in Turkey after the Chernobyl accident, 205
Varinlioǧlu, 2005, Determination of natural and artificial radionuclide levels in soils of western and southern coastal area of Turkey, Water Air Soil Pollut., 164, 401, 10.1007/s11270-005-4039-7
Varinlioǧlu, 1994, Levels of cesium radionuclides in mosses in the eastern Black Sea area of Turkey, J. Radioanal. Nucl. Chem. Lett., 187, 435, 10.1007/BF02165773
Waight, 1995
2012
2006
Zhu, 2014, Simulation and dose analysis of a hypothetical accident in Sanmen nuclear power plant, Ann. Nucl. Energy, 65, 207, 10.1016/j.anucene.2013.11.016