Radiological modeling of the impacts of the Chernobyl nuclear power plant accident on Turkey and southwest Asia

Atmospheric Pollution Research - Tập 13 - Trang 101308 - 2022
Efem Bi̇lgi̇ç1, Orhan Gündüz2,3
1Department of Environmental Engineering, The Graduate School of Applied and Natural Sciences, Dokuz Eylul University, 35390, Izmir, Turkey
2Department of Environmental Engineering, Dokuz Eylul University, 35390, Izmir, Turkey
3Department of Environmental Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey

Tài liệu tham khảo

Abagyan, 1986, Information on the accident at the Chernobyl nuclear power station and its consequences prepared for IAEA, Sov. At. Energy, 61, 845, 10.1007/BF01122262 Akçay, 1988, Radioactive pollution of Turkish biotas one year after the Chernobyl accident, J. Radioanal. Nucl. Chem. Lett., 128, 273, 10.1007/BF02166951 Akçay, 2021, On the 30th anniversary of the Chernobyl Nuclear Power Plant Accident, assessment of the activity concentrations and the radiological hazard parameters of soil samples collected from Rize province and districts, Appl. Radiat. Isot., 168, 10.1016/j.apradiso.2020.109435 Albergel, 1988, The chernobyl accident: modelling of dispersion over europe of the radioactive plume and comparison with air activity measurements, Atmos. Environ., 22, 2431, 10.1016/0004-6981(88)90475-1 Balonov, 2000, Methodology of internal dose reconstruction for a Russian population after the Chernobyl accident, Radiat. Protect. Dosim., 92, 247, 10.1093/oxfordjournals.rpd.a033278 Bilgiç, 2020, Dose and risk estimation of Cs-137 and I-131 released from a hypothetical accident in Akkuyu Nuclear Power Plant, J. Environ. Radioact., 211, 10.1016/j.jenvrad.2019.106082 Brandt, 2002, Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model, Atmos. Chem. Phys., 2, 397, 10.5194/acp-2-397-2002 Cardis, 2006, Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident, Int. J. Cancer, 119, 1224, 10.1002/ijc.22037 Celik, 2009, Natural and artificial radioactivity measurements in Eastern Black Sea region of Turkey, J. Hazard Mater., 162, 146, 10.1016/j.jhazmat.2008.05.017 Davoine, 2007, Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport, Atmos. Chem. Phys., 7, 1549, 10.5194/acp-7-1549-2007 De Cort, 1998, Atlas of caesium 137 deposition on europe after the chernobyl accident Devell, 1995 Eckerman, 1993 El Samad, 2007, Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident, J. Environ. Radioact., 92, 72, 10.1016/j.jenvrad.2006.09.008 Evangeliou, 2013, Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution, Atmos. Chem. Phys., 13, 7183, 10.5194/acp-13-7183-2013 Evangeliou, 2017, Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements, Atmos. Chem. Phys., 17, 8805, 10.5194/acp-17-8805-2017 Evangeliou, 2016, Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe, Environ. Pollut., 216, 408, 10.1016/j.envpol.2016.05.030 Golikov, 1993 Gudiksen, 1989, Chernobyl source term, atmospheric dispersion, and dose estimation, Health Phys., 57, 697, 10.1097/00004032-198911000-00001 Hass, 1990, Simulation of the chernobyl radioactive cloud over Europe using the eurad model, Atmos. Environ. Part A, Gen. Top., 24, 673, 10.1016/0960-1686(90)90022-F 2006 1992 2020 2017 1995 Köse, 1994, The levels of cesium radionuclides in lichens in the eastern Black sea area of Turkey, Toxicol. Environ. Chem., 45, 221, 10.1080/02772249409358087 Lange, 1988, Dose estimates from the chernobyl accident, Nucl. Technol., 82, 311, 10.13182/NT88-A34132 Marouf, 1992, Gamma radiation dose to the Iraqui population due to the Chernobyl accident, Radiat. Protect. Dosim., 42, 55 Min, 2018, Environmental impact on the Korean peninsula due to hypothetical accidental scenarios at the Haiyang nuclear power plant in China, Prog. Nucl. Energy, 105, 254, 10.1016/j.pnucene.2018.01.012 Othman, 1990, The impact of the chernobyl accident on Syria, J. Radiol. Prot., 10, 103, 10.1088/0952-4746/10/2/003 Persson, 1987, The Chernobyl accident - a meteorological analysis of how radionuclides reached and were deposited in Sweden, Ambio, 16, 20 Pisso, 2019, The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci, Model Dev, 12, 4955, 10.5194/gmd-12-4955-2019 Samad, 2013, Determination of natural and artificial radioactivity in soil at North Lebanon province, J. Environ. Radioact., 125, 36, 10.1016/j.jenvrad.2013.02.010 1986, The accident at the chernobyl nuclear power plant and its consequences, 25 Seibert, 2013 Simsek, 2014, Simulation of 137Cs transport and deposition after the chernobyl nuclear power plant accident and radiological doses over the anatolian peninsula, Sci. Total Environ., 499, 74, 10.1016/j.scitotenv.2014.08.038 Srinivas, 2014, Assessment of atmospheric dispersion and radiological impact from the Fukushima accident in a 40-km range using a simulation approach, Air Qual. Atmos. Heal., 7, 209, 10.1007/s11869-014-0241-3 Srinivas, 2005, A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site, Atmos. Environ., 39, 1497, 10.1016/j.atmosenv.2004.11.016 Stohl, 2005, Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461, 10.5194/acp-5-2461-2005 Stohl, 1998, Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data, Atmos. Environ., 32, 4245, 10.1016/S1352-2310(98)00184-8 Stohl, 2012, Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313, 10.5194/acp-12-2313-2012 Stohl, 1999, A density correction for Lagrangian particle dispersion models, Boundary-Layer Meteorol., 90, 155, 10.1023/A:1001741110696 2007 Talerko, 2005, Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident, J. Environ. Radioact., 78, 311, 10.1016/j.jenvrad.2004.04.008 Talerko, 2005, Reconstruction of 131I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling, J. Environ. Radioact., 84, 343, 10.1016/j.jenvrad.2005.04.005 Terada, 2008, Development of an atmospheric dispersion model for accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the chernobyl nuclear accident, J. Nucl. Sci. Technol., 45, 920, 10.1080/18811248.2008.9711493 2000 1988 Varinlioğlu, 1997, Deposition of the radiocaesium in soil at the Black Sea coastal area in Turkey after the Chernobyl accident, 205 Varinlioǧlu, 2005, Determination of natural and artificial radionuclide levels in soils of western and southern coastal area of Turkey, Water Air Soil Pollut., 164, 401, 10.1007/s11270-005-4039-7 Varinlioǧlu, 1994, Levels of cesium radionuclides in mosses in the eastern Black Sea area of Turkey, J. Radioanal. Nucl. Chem. Lett., 187, 435, 10.1007/BF02165773 Waight, 1995 2012 2006 Zhu, 2014, Simulation and dose analysis of a hypothetical accident in Sanmen nuclear power plant, Ann. Nucl. Energy, 65, 207, 10.1016/j.anucene.2013.11.016