Radio resource management for OFDM-based dual-function radar-communication: sum-rate and fairness
Tóm tắt
Từ khóa
Tài liệu tham khảo
F. Liu, C. Masouros, A.P. Petropulu, H. Griffiths, L. Hanzo, Joint radar and communication design: applications, state-of-the-art, and the road ahead. IEEE Trans. Commun. 68(6), 3834–3862 (2020)
H. Griffiths, L. Cohen, S. Watts, E. Mokole, C. Baker, M. Wicks, S. Blunt, Radar spectrum engineering and management: technical and regulatory issues. Proc. IEEE 103(1), 85–102 (2014)
Y. Cui, F. Liu, X. Jing, J. Mu, Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges. IEEE Netw. 35(5), 158–167 (2021). https://doi.org/10.1109/MNET.010.2100152
F. Liu, C. Masouros, A.P. Petropulu, H. Griffiths, L. Hanzo, Joint radar and communication design: applications, state-of-the-art, and the road ahead. IEEE Trans. Commun. 68(6), 3834–3862 (2020). https://doi.org/10.1109/TCOMM.2020.2973976
F. Liu, Y. Cui, C. Masouros, J. Xu, T.X. Han, Y.C. Eldar, S. Buzzi, Integrated sensing and communications: toward dual-functional wireless networks for 6g and beyond. IEEE J. Sel. Areas Commun. (2022)
F. Liu, Y. Cui, C. Masouros, J. Xu, T.X. Han, Y.C. Eldar, S. Buzzi, Integrated sensing and communications: toward dual-functional wireless networks for 6g and beyond. IEEE J. Sel. Areas Commun. (2022). https://doi.org/10.1109/JSAC.2022.3156632
A. Hassanien, M.G. Amin, Y.D. Zhang, F. Ahmad, Signaling strategies for dual-function radar communications: an overview. IEEE Aerosp. Electron. Syst. Mag. 31(10), 36–45 (2016)
A. Hassanien, B. Himed, B.D. Rigling, A dual-function mimo radar-communications system using frequency-hopping waveforms. In: 2017 IEEE Radar Conference (RadarConf), pp. 1721–1725 (2017). IEEE
A. Hassanien, M.G. Amin, Y.D. Zhang, F. Ahmad, Dual-function radar-communications: information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 64(8), 2168–2181 (2016)
J. Mu, Y. Gong, F. Zhang, Y. Cui, F. Zheng, X. Jing, Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks. IEEE Commun. Lett. 25(10), 3301–3304 (2021). https://doi.org/10.1109/LCOMM.2021.3098748
S. Sen, A. Nehorai, Adaptive OFDM radar for target detection in multipath scenarios. IEEE Trans. Signal Process. 59(1), 78–90 (2011). https://doi.org/10.1109/TSP.2010.2086448
M. Bică, V. Koivunen, Generalized multicarrier radar: models and performance. IEEE Trans. Signal Process. 64(17), 4389–4402 (2016). https://doi.org/10.1109/TSP.2016.2566610
S. Sen, C.W. Glover, Frequency adaptability and waveform design for OFDM radar space-time adaptive processing. In: 2012 IEEE Radar Conference, pp. 0230–0235 (2012). https://doi.org/10.1109/RADAR.2012.6212142
K. Huo, B. Deng, Y. Liu, W. Jiang, J. Mao, High resolution range profile analysis based on multicarrier phase-coded waveforms of OFDM radar. J. Syst. Eng. Electron. 22(3), 421–427 (2011). https://doi.org/10.3969/j.issn.1004-4132.2011.03.009
G.E.A. Franken, H. Nikookar, P.V. Genderen, Doppler tolerance of OFDM-coded radar signals. In: 2006 European Radar Conference, pp. 108–111 (2006). https://doi.org/10.1109/EURAD.2006.280285
C. Sturm, T. Zwick, W. Wiesbeck, An ofdm system concept for joint radar and communications operations. In: VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, pp. 1–5 (2009). https://doi.org/10.1109/VETECS.2009.5073387
Y.L. Sit, B. Nuss, T. Zwick, On mutual interference cancelation in a MIMO OFDM multiuser radar-communication network. IEEE Trans. Veh. Technol. 67(4), 3339–3348 (2018). https://doi.org/10.1109/TVT.2017.2781149
Z. Cheng, Z. He, B. Liao, Hybrid beamforming design for OFDM dual-function radar-communication system. IEEE J. Sel. Top. Signal Process. 15(6), 1455–1467 (2021)
M.F. Keskin, V. Koivunen, H. Wymeersch, Limited feedforward waveform design for OFDM dual-functional radar-communications. IEEE Trans. Signal Process. 69, 2955–2970 (2021)
C. Sahin, P.M. McCormick, J.G. Metcalf, S.D. Blunt, Power-efficient multi-beam phase-attached radar/communications. In: 2019 IEEE Radar Conference (RadarConf), pp. 1–6 (2019). https://doi.org/10.1109/RADAR.2019.8835583
Y. Zhou, H. Zhou, F. Zhou, Y. Wu, V.C.M. Leung, Resource allocation for a wireless powered integrated radar and communication system. IEEE Wirel. Commun. Lett. 8(1), 253–256 (2019). https://doi.org/10.1109/LWC.2018.2868819
C. Shi, F. Wang, S. Salous, J. Zhou, Joint subcarrier assignment and power allocation strategy for integrated radar and communications system based on power minimization. IEEE Sens. J. 19(23), 11167–11179 (2019). https://doi.org/10.1109/JSEN.2019.2935760
F. Wang, H. Li, Power allocation for coexisting multicarrier radar and communication systems in cluttered environments. IEEE Trans. Signal Process. 69, 1603–1613 (2021). https://doi.org/10.1109/TSP.2021.3060003
H. Yang, Z. Wei, Z. Feng, C. Qiu, Z. Fang, X. Chen, P. Zhang, Queue-aware dynamic resource allocation for the joint communication-radar system. IEEE Trans. Veh. Technol. 70(1), 754–767 (2020)
D.P. Palomar, M. Chiang, A tutorial on decomposition methods for network utility maximization. IEEE J. Sel. Areas Commun. (2006)
R. Zhang, S. Cui, Cooperative interference management with MISO beamforming. IEEE Trans. Signal Process. (2010)
J.V.C. Evangelista, Z. Sattar, G. Kaddoum, A. Chaaban, Fairness and sum-rate maximization via joint channel and power allocation in uplink SCMA networks. IEEE Trans. Wirel. Commun. (2018)
F. Wang, H. Li, M.A. Govoni, Power allocation and co-design of multicarrier communication and radar systems for spectral coexistence. IEEE Trans. Signal Process. 67(14), 3818–3831 (2019). https://doi.org/10.1109/TSP.2019.2920598
Y.D.J. Bultitude, T. Rautiainen, Ist-4-027756 winner ii d1. 1.2 v1. 2 winner ii channel models. EBITG, TUI, UOULU, CU/CRC, NOKIA, Technical Report (2007)