Radical Exchanges and Structural Transformations on the Iron Carbonyl-Bulky Tin Cluster Complex, Fe2(μ-SnBu 2 t )2(CO)8 by Solvents Toluene, Xylenes and Ethylbenzene
Tóm tắt
The reaction of Fe2(CO)9 and Bu
3
t
SnH yielded the bimetallic cluster complexes Fe2(μ-SnBu
2
t
)2(CO)8, 1, and Fe4(μ4-Sn)(μ-SnBu
2
t
)2(CO)16, 3. Compound 3 contains two Fe2(CO)8(μ-SnBu
2
t
) groups held together by a central quadruply bridging tin atom, giving an overall bow-tie structure for the one tin and four iron atoms. Refluxing compound 1 in toluene solvent affords the complex Fe2[μ-SnBut(CH2Ph)]2(CO)8, 4, where two of the But groups in 1 have been replaced with benzyl groups, as a result of selective benzylic C–H bond activation of solvent toluene. Similarly refluxing compound 1 in ortho-, meta- and para-xylene solvents gives the complexes where two, three and four of the But groups in 1 have been replaced by the respective xylyl groups. Compound 1 also reacts with ethylbenzene to furnish the complex Fe2[μ-SnBut(MeCHPh)]2(CO)8, 14, where two of the But groups in 1 have been replaced as a result of the benzylic C–H activation of ethylbenzene. A mechanism based on a radical pathway is proposed for the selective C–H bond activation by 1.
Tài liệu tham khảo
R. D. Adams, B. Captain, and E. Trufan (2008). J. Organomet. Chem. 695, 3593–3602.
R. D. Adams, D. A. Blom, B. Captain, R. Raja, J. M. Thomas, and E. Trufan (2008). Langmuir 24, 9223–9226.
R. D. Adams, E. M. Boswell, B. Captain, A. B. Hungria, P. Midgley, R. Raja, and J. M. Thomas (2007). Angew. Chem. Int. Ed. 46, 8182–8185.
R. D. Adams and B. Captain, Turning points in solid-state, materials and surface chemistry (Royal Society of Chemistry, UK, 2007), Chap. 31, pp. 534–549.
R. D. Adams, B. Captain, M. B. Hall, E. Trufan, and X. Yang (2007). J. Am. Chem. Soc. 129, 12328–12340.
R. D. Adams, B. Captain, and L. Zhu (2006). Organometallics 25, 4183–4187.
A. B. Hungria, R. Raja, R. D. Adams, B. Captain, J. M. Thomas, P. A. Midgley, V. Golvenko, and B. F. G. Johnson (2006). Angew. Chem. Int. Ed. 45, 4782–4785.
R. D. Adams, B. Captain, and W. Fu (2003). J. Organomet. Chem. 671, 158–165.
R. D. Adams, B. Captain, W. Fu, and M. D. Smith (2002). Inorg. Chem. 41, 5593–5601.
L. Zhu, V. Yempally, D. Isrow, P. J. Pellechia, and B. Captain (2010). J. Organomet. Chem. 695, 1–5.
M. S. Chen and M. C. White (2007). Science 318, 783.
M. Lersch and M. Tilset (2005). Chem. Rev. 105, 2471.
R. H. Crabtree (2004). J. Organomet. Chem. 689, 4083.
J. A. Labinger and J. E. Bercaw (2002). Nature 417, 507.
A. E. Shilov and G. B. Shul’pin (1997). Chem. Rev. 97, 2879.
F. Zhang, C. W. Kirby, D. W. Hairsine, M. C. Jennings, and R. J. Puddephatt (2005). J. Am. Chem. Soc. 127, 14196.
J. Ito and H. Nishiyama (2007). Eur. J. Inorg. Chem. 1114.
P. Burger and R. G. Bergman (1993). J. Am. Chem. Soc. 115, 10462.
A. Capape, M. Crespo, J. Granell, A. Vizcarro, J. Zafrilla, M. Font-Bardia, and X. Solans (2006). Chem. Commun. 4128.
C. S. Adams, P. Legzdins, and W. S. McNeil (2001). Organometallics 20, 4939.
A. Miyashita, M. Hotta, and Y. Saida (1994). J. Organomet. Chem. 473, 353.
J. T. Groves and P. Veski (1989). J. Am. Chem. Soc. 111, 8537.
K. J. D. Rossi and B. B. Wayland (1985). J. Am. Chem. Soc. 107, 7941.
A. N. Vedernikov, S. V. Borisoglebski, A. B. Solomonov, and B. N. Solomonov (2000). Medeleev Commun. 10, 20.
Y. Matsuo, A. Iwashita, and E. Nakamura (2006). Chem. Lett. 35, 858.
L. Johansson, O. B. Ryan, C. Romming, and M. Tilset (2001). J. Am. Chem. Soc. 123, 6579.
S. B. Zhao, D. Song, W. L. Jia, and S. Wang (2005). Organometallics 24, 3290.
A. Y. Verat, M. Pink, H. Fan, J. Tomaszewski, and K. G. Coulton (2008). Organometallics 27, 166.
J. P. Collman and R. Boulatov (2001). Inorg. Chem. 40, 2461.
M. Lail, C. M. Bell, D. Conner, T. R. Cundari, and J. L. Peterson (2004). Organometallics 23, 5007.
N. A. Foley, Z. Ke, T. B. Gunnoe, T. R. Cundari, and J. L. Peterson (2008). Organometallics 27, 3007.
A. M. Voutchkova and R. H. Crabtree (2009). J. Mol. Catal. A Chem. 312, 1.
D. Rabinovich, R. Zelman, and G. Parkin (1992). J. Am. Chem. Soc. 114, 4611.
S. H. K. Ng, C. S. Adams, T. W. Hayton, P. Legzdins, and B. O. Patrick (2003). J. Am. Chem. Soc. 125, 15210.
M. E. van der Boom, S. Y. Liou, L. J. W. Shimon, Y. Ben-David, and D. Milstein (1996). Organometallics 15, 2562.
J. Huang, E. D. Stevens, and S. P. Nolan (2000). Organometallics 19, 1194.
D. Wang, A. Villa, F. Porta, L. Prati, and D. Su (2008). J. Phys. Chem. C 112, (23), 8617.
J. Choudhury and S. Roy (2008). J. Mol. Catal. A Chem. 279, 37.
J. Choudhury, S. Podder, and S. Roy (2005). J. Am. Chem. Soc. 127, 6162.
Y. Ohki, T. Hatanaka, and K. Tatsumi (2008). J. Am. Chem. Soc. 130, 17174.
A. Jana, H. W. Roesky, C. Schulzke, and P. P. Samuel (2010). Organometallics 29, (21), 4837.
Apex2 Version 2.2-0 and SAINT+ Version 7.46A; Bruker Analytical X-ray System, Inc., Madison, Wisconsin, USA, 2007.
G. M. Sheldrick, SHELXTL Version 6.1; Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 2000.
T. J. Marks and A. R. Newman (1973). J. Am. Chem. Soc. 95, 769.
C. J. Gilmore and P. J. Woodward (1972). J. Chem. Soc. Dalton Trans. 1387.
P. F. Lindley and P. Woodward (1967). J. Chem. Soc. A X, 382.
S. G. Anema, K. M. Mackey, and B. K. Nicholson (1989). J. Organomet. Chem. 372, 25.
R. M. Sweet, C. J. Fritchie Jr, and R. A. Schunn (1967). Inorg. Chem. 6, 749.
R. D. Adams, B. Captain, and L. Zhu (2007). Inorg. Chem. 46, 4605.
W. A. Pryor, F. Y. Tang, R. H. Tang, and D. F. Church (1982). J. Am. Chem. Soc. 104, 2885.