Radiative models of laser-induced plasma and pump-probe diagnostics relevant to laser-induced breakdown spectroscopy

Spectrochimica Acta Part B: Atomic Spectroscopy - Tập 65 - Trang 345-359 - 2010
Igor B. Gornushkin1, Ulrich Panne1,2
1BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin, Germany
2Humboldt Universitaet zu Berlin, Chemistry Department, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany

Tài liệu tham khảo

Cremers, 2006 Miziolek, 2006 Singh, 2007 Lee, 2004, Recent applications of laser-induced breakdown spectrometry: a review of material approaches, Appl. Spectrosc. Rev., 39, 27, 10.1081/ASR-120028868 Winefordner, 2004, Comparing several atomic spectrometric methods to the super stars: special emphasis on laser-induced breakdown spectrometry, LIBS, a future super star, J. Anal. At. Spectrom., 19, 1061, 10.1039/b400355c Pasquini, 2007, Laser-induced breakdown spectroscopy, J. Braz. Chem. Soc., 18, 463, 10.1590/S0103-50532007000300002 Aragon, 2008, Characterization of laser-induced plasmas by optical emission spectroscopy: a review of experiments and methods, Spectrochim. Acta Part B, 63, 893, 10.1016/j.sab.2008.05.010 Haglund, 1998, Mechanisms of laser-induced desorption and ablation, 30 Weyl, 1989, Physics of laser-induced breakdown: an update Vogel, 1999, Energy balance of optical breakdown in water at nanosecond to femtosecond time scales, Appl. Phys. B, 68, 271, 10.1007/s003400050617 Kennedy, 1997, Laser-induced breakdown in aqueous media, Prog. Quant. Electron., 21, 155, 10.1016/S0079-6727(97)00002-5 Kim, 1998, Pulsed laser-induced ablation of absorbing liquids and acoustic-transient generation, Appl. Phys. A, 67, 169, 10.1007/s003390050756 van Dijk, 2009, Plasma modelling and numerical simulation, J. Phys. D: Appl. Phys., 42, 190301, 10.1088/0022-3727/42/19/190301 Mazhukin, 2002, Modeling of radiation transfer and emission spectra in laser-induced plasma of Al vapor, J. Quant. Spectrosc. Radiat. Transf., 73, 451, 10.1016/S0022-4073(01)00207-2 De Giacomo, 2001, Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides, Spectrochim. Acta Part B, 56, 753, 10.1016/S0584-8547(01)00224-5 Zhang, 2001, Numerical simulation of laser-induced plasma during pulsed laser deposition, J. Appl. Phys., 90, 5889, 10.1063/1.1415068 Bogaerts, 2004, Nanosecond laser ablation of Cu: modeling of the expansion in He background gas, the comparison with expansion in vacuum, J. Anal. At. Spectrom., 19, 1169, 10.1039/B402946A Jandeleit, 1996, Picosecond laser ablation of thin copper films, Appl. Phys. A, 63, 117, 10.1007/BF01567638 Sonntag, 2009, Femtosecond laser ablation of aluminium, Appl. Surf. Sci., 255, 9742, 10.1016/j.apsusc.2009.04.062 Garrelie, 1999, Monte Carlo simulation of the laser-induced plasma-plume expansion under vacuum and with a background gas, Appl. Surf. Sci., 138–139, 97, 10.1016/S0169-4332(98)00578-9 Franklin, 2001, Monte-Carlo simulation of laser ablated plasma for thin film deposition, Appl. Surf. Sci., 177, 15, 10.1016/S0169-4332(01)00176-3 Alder, 2009, Studies in molecular dynamics: I. General method, J. Chem. Phys., 31, 459, 10.1063/1.1730376 Gouriet, 2009, Molecular dynamics study of nanoparticle evolution in a background gas under laser ablation conditions, Appl. Surf. Sci., 255, 5116, 10.1016/j.apsusc.2008.07.097 Itina, 2002, Laser-generated plasma plume expansion: combined continous-microscopic modeling, Phys. Rev. E, 66, 066406, 10.1103/PhysRevE.66.066406 Itina, 2003, Combined continuous-microscopic modeling of laser plume expansion, Appl. Surf. Sci., 208–209, 27, 10.1016/S0169-4332(02)01280-1 McWhirter, 1965, 201 Cristoforetti, 2010, Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion, Spectrochim. Acta Part B, 65, 86, 10.1016/j.sab.2009.11.005 1968, 215 Van der Mullen, 1990, Excitation equilibria in plasmas, a classification, Phys. Rep., 191, 109, 10.1016/0370-1573(90)90152-R Capitelli, 2007, Non-equilibrium plasma kinetics: a state-to-state approach, Plasma Sources Sci. Technol., 16, S30, 10.1088/0963-0252/16/1/S03 Colonna, 2001, Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas, Spectrochim. Acta Part B, 56, 587, 10.1016/S0584-8547(01)00223-3 Casavola, 2003, Non-equilibrium conditions during a laser-induced plasma expansion, Appl. Surf. Sci., 208–209, 85, 10.1016/S0169-4332(02)01340-5 Capitelli, 2000, Non-equilibrium and equilibrium problems in laser-induced plasmas, Spectrochim. Acta Part B, 55, 559, 10.1016/S0584-8547(00)00168-3 Colonna, 2001, Modeling of LIBS plasma expansion, Spectrochim. Acta Part B, 56, 567, 10.1016/S0584-8547(01)00230-0 Casavola, 2004, A combined fluid dynamic and chemical model to investigate the laser-induced plasma expansion, Appl. Phys. A, 79, 1315, 10.1007/s00339-004-2761-4 Capitelli, 2004, Laser-induced plasma expansion: theoretical and experimental aspects, Spectrochim. Acta Part B, 59, 271, 10.1016/j.sab.2003.12.017 Babushok, 2003, Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead, Appl. Opt., 42, 5947, 10.1364/AO.42.005947 Babushok, 2005, Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon, Spectrochim. Acta Part B, 60, 926, 10.1016/j.sab.2005.03.012 Babushok, 2007, Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX), Spectrochim. Acta Part B, 62, 1321, 10.1016/j.sab.2007.10.029 Mazhukin, 2003, Optical breakdown in aluminum vapor induced by ultraviolet laser radiation, J. Appl. Phys., 93, 56, 10.1063/1.1522810 Mazhukin, 2001, Modeling of plasma dynamics at the air–water interface: application to laser shock processing, J. Appl. Phys., 90, 607, 10.1063/1.1378061 Mazhukin, 2004, Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapor, J. Phys. D: Appl. Phys., 37, 185, 10.1088/0022-3727/37/2/007 Travaillé, 2009, Local thermodynamic equilibrium and related metrological issues involving collisional-radiative model in laser-induced aluminum plasmas, Spectrochim. Acta Part B, 64, 931, 10.1016/j.sab.2009.07.028 Pomarico, 2002, An analytic collisional-radiative model incorporating non-LTE and optical depth effects, Eur. Phys. J. D, 19, 65, 10.1140/epjd/e20020056 Gordillo-Vázquez, 2001, Concentration of Li atoms in plasmas produced from laser ablation of LiNbO3, J. Appl. Phys., 90, 599, 10.1063/1.1381553 Le, 2000, Modeling of gas dynamics for a laser-generated plasma: propagation into low pressure gases, Phys. Rev. E, 62, 4152, 10.1103/PhysRevE.62.4152 MacFarlane, 2004, Simulation of the ionization dynamics of aluminum irradiated by intense short-pulse lasers, 457 MacFarlane, 2006, HELIOS-CR — a 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling, J. Quant. Spectrosc. Radiat. Transf., 99, 381, 10.1016/j.jqsrt.2005.05.031 MacFarlane, 2005, Radiation-hydrodynamics, spectral, and atomic physics modeling of laser-produced plasma EUVL light sources, 5751, 588 Hajiyev, 2004, A collisional-radiative model for simulation of Ne-like and F-like resonance lines emitted from laser produced plasmas, Comp. Phys. Comm., 164, 86, 10.1016/j.cpc.2004.06.012 Yalçin, 1999, Influence of ambient conditions on the laser air spark, Appl. Phys. B, 68, 121, 10.1007/s003400050596 Hermann, 1998, Diagnostics of the early phase of an ultraviolet laser-induced plasma by spectral line analysis considering self-absorption, J. Appl. Phys., 83, 691, 10.1063/1.366639 Tallents, 1980, An investigation of the potential of optically thick line profiles for determining laser-produced plasma parameters, J. Phys. B: Atom. Molec. Phys., 13, 3057, 10.1088/0022-3700/13/15/022 Gornushkin, 2001, Modeling an inhomogeneous optically thick laser-induced plasma: a simplified theoretical approach, Spectrochim. Acta Part B, 1769, 10.1016/S0584-8547(01)00254-3 Arnold, 1999, Spherical expansion of the vapor plume into ambient gas: an analytical model, Appl. Phys. A, 69, S87, 10.1007/s003399900183 Wen, 2007, Expansion of the laser ablation vapor plume into a background gas. I. Analysis, J. Appl. Phys., 101, 023114, 10.1063/1.2431080 Wen, 2007, Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis, J. Appl. Phys., 101, 023115, 10.1063/1.2431085 Wen, 2006, Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses, J. Appl. Phys., 100, 053104, 10.1063/1.2220646 Wen, 2007, Analysis of laser ablation: contribution of ionization energy to the plasma and shock wave properties, J. Appl. Phys., 102, 043103, 10.1063/1.2761827 Ho, 1996, Gas dynamics and radiation heat transfer in the vapor plume produced by pulsed laser irradiation of aluminum, J. Appl. Phys., 79, 7205, 10.1063/1.361436 Gusarov, 2000, Two-dimensional gas-dynamic model of laser ablation in an ambient gas, Appl. Surf. Sci., 154–155, 66, 10.1016/S0169-4332(99)00389-X Gusarov, 2000, Gas dynamics of laser ablation: influence of ambient atmosphere, J. Appl. Phys., 88, 4352, 10.1063/1.1286175 Liu, 1997, Computational modeling of physical processes during laser ablation, Mater. Sci. Eng., B47, 70, 10.1016/S0921-5107(96)01883-1 Chen, 1999, Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface, Phys. Rev. B, 60, 8373, 10.1103/PhysRevB.60.8373 Leboeuf, 1996, Computational modeling of dynamical processes in laser ablation, Appl. Surf. Sci., 96–98, 14, 10.1016/0169-4332(95)00372-X Mazhukin, 2004, Analysis of laser-induced evaporation of Al target under conditions of vapour plasma formation, Thin Solid Films, 453–454, 353, 10.1016/j.tsf.2003.11.104 Mazhukin, 2007, Modeling of plasma-controlled surface evaporation and condensation of Al target under pulsed laser irradiation in the nanosecond regime, Appl. Surf. Sci., 253, 7686, 10.1016/j.apsusc.2007.02.039 Mazhukin, 2007, Modeling of plasma-controlled evaporation and surface condensation of Al induced by 1.06 and 0.248µm laser radiations, J. Appl. Phys., 101, 024922, 10.1063/1.2431951 Bogaerts, 2003, Laser ablation for analytical sampling: what can we learn from modeling?, Spectrochim. Acta Part B, 58, 1867, 10.1016/j.sab.2003.08.004 Bogaerts, 2005, Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation, Spectrochim. Acta Part B, 60, 1280, 10.1016/j.sab.2005.06.009 Bogaerts, 2006, Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments, J. Anal. At. Spectrom., 21, 384, 10.1039/b514313f Bogaerts, 2008, Double pulse laser ablation and laser-induced breakdown spectroscopy: a modeling investigation, Spectrochim. Acta Part B, 63, 746, 10.1016/j.sab.2008.04.005 Wu, 2006, Modeling of nanosecond laser ablation with vapor plasma formation, J. Appl. Phys., 99, 084310, 10.1063/1.2190718 Wu, 2007, Modeling and experimental verification of plasmas induced by high-power nanosecond laser–aluminum interactions in air, Phys. Rev. E, 026405, 10.1103/PhysRevE.76.026405 Ershov-Pavlov, 2008, Time–space distribution of laser-induced plasma parameters and its influence on emission spectra of the laser plumes, Spectrochim. Acta Part B, 63, 1024, 10.1016/j.sab.2008.09.009 Aghaei, 2008, Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser-induced plasma radiation, J. Appl. Phys., 104, 053303, 10.1063/1.2975365 Tognoni, 2010, Calibration-free laser-induced breakdown spectroscopy: state of the art, Spectrochim. Acta Part B, 65, 1, 10.1016/j.sab.2009.11.006 Ciucci, 1999, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc., 53, 960, 10.1366/0003702991947612 Ciucci, 1999, CF-LIPS: a new approach to LIPS spectra analysis, laser part, Beams, 17, 793 Bilajic, 2002, A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy, Spectrochim. Acta Part B, 57, 339, 10.1016/S0584-8547(01)00398-6 Tognoni, 2007, A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma, Spectrochim. Acta Part B, 62, 1287, 10.1016/j.sab.2007.10.005 Corsi, 2002, Calibration free laser-induced plasma spectroscopy: a new method for combustion products analysis, Clean Air, 3, 69, 10.1080/15614410211845 Corsi, 2003, Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis, Appl. Opt., 42, 6133, 10.1364/AO.42.006133 Corsi, 2006, Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils, Appl. Geochem., 21, 748, 10.1016/j.apgeochem.2006.02.004 Angeli, 2006, Spectroscopic techniques applied to the study of italian painted neolithic potteries, Laser Chem., 2006, 10.1155/2006/61607 Borgia, 2000, Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: application to pigment analysis, J. Cult. Herit., 1, S281, 10.1016/S1296-2074(00)00174-6 Burakov, 2004, Calibration-free laser spectral analysis of glasses and copper alloys, Russ. J. Appl. Spectrosc., 71, 740, 10.1023/B:JAPS.0000049638.55151.80 Bel'kov, 2005, Spectral standard-free microanalysis of gold alloys, Russ. J. Appl. Spectrosc., 72, 376, 10.1007/s10812-005-0085-6 Burakov, 2007, Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy, Spectrochim. Acta Part B, 62, 217, 10.1016/j.sab.2007.03.021 De Giacomo, 2007, ns- and fs-LIBS of copper-based-alloys: a different approach, Appl. Surf. Sci., 253, 7677, 10.1016/j.apsusc.2007.02.037 Fornarini, 2005, Calibration analysis of bronze samples by nanosecond laser-induced breakdown spectroscopy: a theoretical and experimental approach, Spectrochim. Acta Part B, 60, 1186, 10.1016/j.sab.2005.06.008 Colao, 2004, Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues, Planet. Space Sci., 52, 117, 10.1016/j.pss.2003.08.012 Sallé, 2006, Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere, Spectrochim. Acta Part B, 61, 301, 10.1016/j.sab.2006.02.003 Gornushkin, 2004, Radiation dynamics of post-breakdown laser-induced plasma, Spectrochim. Acta Part B, 59, 401, 10.1016/j.sab.2003.12.023 Gornushkin, 2005, Experimental verification of a radiative model of laser-induced plasma expanding into vacuum, Spectrochim. Acta Part B, 60, 215, 10.1016/j.sab.2004.11.009 Gornushkin, 2006, Theoretical modeling of a non-isothermal asymmetric expansion of laser-induced plasma in vacuum, J. Appl. Phys., 100, 073304, 10.1063/1.2345460 Shabanov, 2008, Radiation from asymmetric laser-induced plasmas collected by a lens or optical fiber, Appl. Opt., 47, 1745, 10.1364/AO.47.001745 Kazakov, 2004, Radiation dynamics of post-breakdown laser-induced plasma expanding into ambient gas, Appl. Opt., 45, 2810, 10.1364/AO.45.002810 Yaroshchyk, 2006, A semi-quantitative standard-less analysis method for laser-induced breakdown spectroscopy, Spectrochim. Acta Part B, 61, 200, 10.1016/j.sab.2006.01.004 D'Angelo, 2008, Laser-induced breakdown spectroscopy on metallic alloys: solving inhomogeneous optically thick plasmas, Spectrochim. Acta Part B, 63, 367, 10.1016/j.sab.2007.10.049 Herrera, 2009, Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions, J. Anal. At. Spectrom., 24, 426, 10.1039/b820494b Aguilera, 2004, Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements, Spectrochim. Acta Part B, 59, 1861, 10.1016/j.sab.2004.08.003 An, 2000, Observation of species distribution in laser-induced plasma, Appl. Surf. Sci., 154–155, 269, 10.1016/S0169-4332(99)00446-8 Settles, 2001 Hutchinson, 2002 Corsi, 2003, Temporal and spatial evolution of a laser-induced plasma from a steel target, Appl. Spectrosc., 57, 715, 10.1366/000370203322005436 Cristoforetti, 2006, Spectroscopic and shadowgraphic analysis of laser-induced plasmas in the orthogonal double pulse pre-ablation configuration, Spectrochim. Acta Part B, 57, 340, 10.1016/j.sab.2006.03.004 Choi, 2002, Femtosecond laser-induced ablation of crystalline silicon upon double beam irradiation, Appl. Surf. Sci., 197–198, 720, 10.1016/S0169-4332(02)00400-2 Borchert, 2005, Plasma formation during the interaction of picosecond and nanosecond laser pulses with BK7 glass, J. Phys. D, 38, 300, 10.1088/0022-3727/38/2/015 Hauer, 2004, Time resolved study of the laser ablation induced shockwave, Thin Solid Films, 453–454, 584, 10.1016/j.tsf.2003.11.139 Zeng, 2005, Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon, Appl. Phys. A, 80, 237, 10.1007/s00339-004-2963-9 Liu, 2007, Time resolved shadowgraph images of silicon during laser ablation: shockwaves and particle generation, J. Phys. Conf. Ser., 59, 338, 10.1088/1742-6596/59/1/071 Mao, 2007, Time resolved laser-induced plasma dynamics, Appl. Surf. Sci., 253, 6316, 10.1016/j.apsusc.2007.01.053 Zeng, 2006, Laser-induced shockwave propagation from ablation in a cavity, Appl. Phys. Lett., 88, 10.1063/1.2172738 Gornushkin, 1997, Time-resolved resonance shadow imaging of laser-produced lead and tin plasmas, Spectrochim. Acta Part B, 52, 1617, 10.1016/S0584-8547(97)00062-1 Okano, 2003, Time-resolved electron shadowgraphy for 300ps laser ablation of a copper film, Appl. Phys. Lett., 83, 1536, 10.1063/1.1604946 Hironaka, 1999, Time-resolved X-ray shadowgraphy experiment of laser ablation of aluminum using laser-induced picosecond pulsed X-rays, Jpn. J. Appl. Phys., 38, L242, 10.1143/JJAP.38.L242 Iwase, 1998, Laser-produced plasma diagnostics by a combination of schlieren method and Mach–Zehnder interferometry, Phys. Scr., 58, 634, 10.1088/0031-8949/58/6/017 Englert, 1990, Using the second harmonic from a Nd:YAG as a probe beam for determination of free electron density in a plasma induced by the fundamental, Rev. Sci. Instrum., 61, 3783, 10.1063/1.1141553 Ventzek, 1990, Schlieren measurements of the hydrodynamics of excimer laser ablation of polymers in atmospheric pressure gas, J. Appl. Phys., 68, 965, 10.1063/1.346661 Wang, 2007, Laser-induced spark ignition of H2/O2/Ar mixtures, Sci. China E, 50, 797, 10.1007/s11431-007-0034-0 Vogel, 2003, Mechanisms of pulsed laser ablation of biological tissues, Chem. Rev., 103, 577, 10.1021/cr010379n Vogel, 2006, Sensitive high-resolution white-light schlieren technique with a large dynamic range for the investigation of ablation dynamics, Opt. Lett., 31, 1812, 10.1364/OL.31.001812 Doyle, 1998, Electron number density measurements in magnesium laser produced plumes, Appl. Surf. Sci., 127–129, 716, 10.1016/S0169-4332(97)00731-9 Schittenhelm, 1997, Time-resolved interferometric investigations of the KrF-laser-induced interaction zone, Appl. Surf. Sci., 109–110, 493, 10.1016/S0169-4332(96)00793-3 Schittenhelm, 1998, Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse, Appl. Surf. Sci., 127–129, 922, 10.1016/S0169-4332(97)00767-8 Noll, 2004, Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples, J. Anal. At. Spectrosc., 19, 419, 10.1039/b315718k Sdorra, 1990, Temporal and spatial distribution of analyte atoms and ions in microplasmas produced by laser ablation of solid samples, Spectrochim. Acta Part B, 45, 917, 10.1016/0584-8547(90)80146-A Sdora, 1989, Basic investigations for laser microanalysis: II. Laser-induced fluorescence in laser-produced sample plumes, Microchim. Acta, 98, 210, 10.1007/BF01244596 Sdorra, 1989, Measurement of atomic fine structure collision transfer cross sections in laser produced vapors, Z. Phys. D. Atoms, Mol. Clust., 13, 95, 10.1007/BF01398577 Margetic, 2003, Hydrodynamic expansion of a femtosecond laser produced plasma, Spectrochim. Acta Part B, 58, 415, 10.1016/S0584-8547(02)00273-2 Margetic, 2004, Shock-wave velocity of a femtosecond laser-produced plasma, Czech. J. Phys., 54, 423, 10.1023/B:CJOP.0000020582.83501.59 Burakov, 2001, Plasma chemistry in laser ablation processes, Spectrochim. Acta Part B, 56, 961, 10.1016/S0584-8547(01)00192-6 C. Dutouquet, J. Hermann, Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species, J. Phys. D: Appl. Phys. 34 (201) 3356–3363. Bondybey, 1981, Laser-induced fluorescence of metal clusters produced by laser vaporization: gas phase spectrum of Pb2, J. Chem. Phys., 74, 6978, 10.1063/1.441064 Bondybey, 1982, Laser excitation spectra and lifetimes of Pb2 and Sn2 produced by YAG laser vaporization, J. Chem. Phys., 76, 2165, 10.1063/1.443314 Bondybey, 1985, Laser-induced fluorescence and bonding of metal dimers, Science, 227, 125, 10.1126/science.227.4683.125 Puretzky, 1998, LIF imaging and gas-phase diagnostics of laser-desorbed MALDI-matrix plumes, Appl. Surf. Sci., 127–129, 248, 10.1016/S0169-4332(97)00639-9 Matsuo, 2007, LIF observation of neutral atoms and ions produced by femtosecond laser ablation of Sm on a substrate, J. Phys. Conf. Ser., 59, 555, 10.1088/1742-6596/59/1/118 Watarai, 2003, Dynamics of laser-ablation plume and ambient gas visualized by two-dimensional laser-induced fluorescence, Appl. Opt., 42, 6001 Okada, 2003, Diagnostics of particle dynamics during optically functional thin-film deposition by laser ablation, RIKEN Rev., 50, 29 Hirsch, 2003, Vacuum-ultraviolet photoabsorption imaging system for laser plasma plume diagnostics, Rev. Sci. Instrum., 74, 2992, 10.1063/1.1571974 Gornushkin, 2003, Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen–nitrogen atmospheres, Appl. Spectrosc., 57, 1442, 10.1366/000370203322554626 King, 1999, Rubidium isotope measurements in solid samples by laser ablation–laser atomic absorption spectroscopy, Spectrochim. Acta Part B, 54, 1771, 10.1016/S0584-8547(99)00140-8 Quentmeier, 2001, Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry, Spectrochim. Acta Part B, 56, 45, 10.1016/S0584-8547(00)00289-5 Gornushkin, 1999, Line broadening mechanisms in the low pressure laser-induced plasma, Spectrochim. Acta Part B, 54, 1207, 10.1016/S0584-8547(99)00064-6 Labazan, 2002, Observation of lithium dimers in laser produced plume by cavity ring-down spectroscopy, Chem. Phys. Lett., 352, 226, 10.1016/S0009-2614(01)01450-6 Krstulović, 2008, Spatial and temporal probing of a laser-induced plasma plume by cavity ringdown spectroscopy, Spectrochim. Acta Part B, 63, 1233, 10.1016/j.sab.2008.07.004 Krstulović, 2009, Cavity ringdown spectroscopy collinear dual-pulse laser plasmas in vacuum, Spectrochim. Acta Part B, 64, 271, 10.1016/j.sab.2009.02.005 Swift, 1970 Wild, 2003, Langmuir probe measurement of the electron temperature in the plasma plume formed by pulsed laser deposition of Bi–Sr–Ca–Cu–O, Czech. J. Phys., 53, 171, 10.1023/A:1022343404173 Hansen, 1999, Langmuir probe study of plasma expansion in pulsed laser ablation, Appl. Phys. A, 69, S601, 10.1007/s003390051485 Williams, 2008, Langmuir probe investigation of surface contamination effects on metals during femtosecond laser ablation, Appl. Surf. Sci., 254, 5921, 10.1016/j.apsusc.2008.03.192 Mannion, 2005, Langmuir probe study of plasma expansion in femtosecond pulsed laser ablation of silver, Proc. SPIE, 5827, 457, 10.1117/12.605164 Warner, 2002, Thomson scattering from analytical plasmas, Spectrochim. Acta Part B, 57, 201, 10.1016/S0584-8547(01)00372-X Delserieys, 2008, Optical Thomson scatter from laser-ablated plumes, Appl. Phys. Lett., 92, 011502, 10.1063/1.2830705 Diwakar, 2008, Study of early laser-induced plasma dynamics: transient electron density gradients via Thomson scattering and Stark broadening, and the implications on laser-induced breakdown spectroscopy measurements, Spectrochim. Acta Part B, 63, 1038, 10.1016/j.sab.2008.07.003