Radiation hardening of constructional cement–magnetite–serpentinite composite under gamma irradiation at increased dose

Inorganic Materials: Applied Research - Tập 8 - Trang 691-695 - 2017
R. N. Yastrebinskii1, G. G. Bondarenko2, V. I. Pavlenko1
1Belgorod State Technological University, Belgorod, Russia
2National Research University, Higher School of Economics, Moscow, Russia

Tóm tắt

It is shown that a constructional radiation-shielding composite material with high resistance to radiation-thermal loads can be obtained. The material was produced using a Portland cement mix, boron-containing chrysotile, magnetite filler, plasticizing additives, and metal fraction by the vibro-packing method. The content of chemically bound water was at least 1.5 wt %. Exposure to high doses of gamma radiation led to formation of monocalcium ferrite CaFe2O4 with high physical and X-ray density in the cement–magnetite–serpentinite composite. Its formation resulted in radiation hardening and increased the mechanical strength of the composite up to the dose of 10 MGy. When a protective composite was exposed to γ radiation with the absorbed dose of 20 MGy, the mechanical strength of the composite was reduced by only 4–5% compared to that of the unirradiated sample.

Tài liệu tham khảo

Novikov, V.M., Slesarev, I.S., and Alekseev, P.N., Atomnye reaktory povyshennoi bezopasnosti. Analiz kontseptual’nykh razrabotok (High-Safety Atomic Reactors: analysis of Conceptual Developments), Moscow: Energoatomizdat, 1993. Egorov, Yu.A. and Mashkovich, V.P., Radiatsionnaya bezopasnost’ i zashchita AES (Radiation Safety and Protection of the NPP), Moscow: Atomizdat, 1982. Pospelov, V.P., Mirenkov, A.F., and Pokrovskii, S.G., Betony radiatsionnoi zashchity atomnyh elektrostantsii (Concretes for Protection of Nuclear Power Plants from Radiation), Moscow: Avgust-Borg, 2006. Komarovskii, A.N., Stroitel’stvo yadernyh ustanovok (Building of Nuclear Installations), Moscow: Atomizdat, 1969. Yastrebinskii, R.N. and Pavlenko, V.I., Synthesis of boron-containing nanotubular serpentines for radiation protective constructional cement composites, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2016, no. 10, pp. 12–15. Yastrebinskii, R.N., Bondarenko, G.G., and Pavlenko, V.I., Attenuation of photon and neutron radiation using ironmagnetite-serpentinite radiation-protective composite, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 2, pp. 275–278. Yastrebinskii, R.N. and Pavlenko, Z.V., Structural and phase transformations in two-component the ironoxide systems under radiation-heat influence, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2016, no. 11, pp. 153–158. Ul’yanov, V.L., Elastic properties of the irradiated ceramic dielectrics under hydrostatic compression, Trudy mezhdunarodnoi konferentsii po radiatsionnomu materialovedeniyu “Radiatsionnoe materialovedenie,” Alushta, 22–25 maya, 1990 g. (Proc. Int. Conf. on Radiation Materials Science “Radiation Materials Science,” Alushta, May 22–25, 1990), Kharkov: Khark. Fiz.- Tekh. Inst., 1990, vol. 4, pp. 66–67. Botaki, A.A., Ul’yanov, V.L., and Pozdeeva, E.V., Structural changes of ionic and ceramic dielectrics after radiation exposure, Materialy VI Mezhnatsional’nogo soveshchaniya “Radiatsionnaya fizika tverdogo tela,” Sevastopol’, 1–6 iyulya, 1996 g. (Proc. VI Int. Conf. “Radiation Physics of Solid Body,” Sevastopol, July 1–6, 1996), Bondarenko, G.G., Ed., Moscow: Mosk. Inst. Elektron. Matem., 1996, pp. 64–65. Astapova, E.S., Structural changes in quartz ceramics after reactor radiation exposure, Fiz. Tverd. Tela, 1989, vol. 23, pp. 75–76. Gorshkov, V.S. and Timashev, V.V., Metody analiza vyazhushchih veshchestv (Analysis of the Knitting Substances), Moscow: Vysshaya Shkola, 1981. Nikol’skii, B.P., Spravochnik khimika (Handbook of the Chemist), Moscow: Khimiya, 1966, vol. 1.