Sự tiếp xúc bức xạ đối với đội ngũ phẫu thuật trong phòng phẫu thuật phối hợp

Journal of Robotic Surgery - Tập 13 - Trang 91-98 - 2018
Konard Schuetze1, A. Eickhoff1, C. Dehner1, M. Schultheiss1, F. Gebhard1, P. H. Richter1
1Department of Trauma-, Hand-, and Reconstructive Surgery, Ulm University, Ulm, Germany.

Tóm tắt

Các phòng phẫu thuật phối hợp cho phép các bác sĩ phẫu thuật thu nhận hình ảnh 2D và 3D có độ phân giải cao trong và sau phẫu thuật và sử dụng chúng cho việc dẫn đường. Liều bức xạ đối với nhân viên phẫu thuật và bệnh nhân vẫn là mối quan tâm chính. Trong 9 tháng, 109 ca phẫu thuật vùng chậu và cột sống đã được thực hiện sử dụng phòng phẫu thuật phối hợp. Liều bức xạ của bác sĩ phẫu thuật và y tá hỗ trợ đã được ghi nhận bằng cách sử dụng máy đo liều thời gian thực. Liều bức xạ thấp hơn cho bác sĩ phẫu thuật chính trong các thủ thuật có hướng dẫn tại cột sống ngực đã được ghi nhận. Đứng giữa máy C-arm trong quá trình lắp vít đã làm tăng gấp sáu lần liều bức xạ. Công cụ định vị cột sống thắt lưng cho thấy liều bức xạ tương tự so với các nghiên cứu trước đây trong các thiết lập phòng phẫu thuật truyền thống. Việc sử dụng phòng phẫu thuật phối hợp cho việc định vị cột sống lưng không cho thấy sự gia tăng về liều bức xạ so với các thiết lập truyền thống. Việc dẫn đường trong và sau phẫu thuật có thể giúp giảm liều bức xạ cho nhân viên phẫu thuật.

Từ khóa

#phòng phẫu thuật phối hợp #bức xạ #phẫu thuật cột sống #liều bức xạ #dẫn đường trong phẫu thuật

Tài liệu tham khảo

Huda W, Nickoloff EL, Boone JM (2008) Overview of patient dosimetry in diagnostic radiology in the USA for the past 50 years. Med Phys 35(12):5713–5728 Giordano BD et al (2009) Cervical spine imaging using mini–C-arm fluoroscopy: patient and surgeon exposure to direct and scatter radiation. J Spinal Disord Tech 22(6):399–403 Sanders R et al (1993) Exposure of the orthopaedic surgeon to radiation. J Bone Jt Surg Am 75(3):326–330 Levin PE, Schoen RW Jr, Browner BD (1987) Radiation exposure to the surgeon during closed interlocking intramedullary nailing. J Bone Jt Surg Am 69(5):761–766 Rampersaud YR et al (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976) 25(20):2637–2645 Mastrangelo G et al (2005) Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (Lond) 55(6):498–500 International Commission on Radiological Protection (1991) ICRP Publication 60: 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP 2:1–3 Bekanntmachung der Neufassung der Röntgenverordnungvom (2003) Bundesgesetzblatt 1:604–635 Giordano BD et al (2008) Cervical spine imaging using standard C-arm fluoroscopy: patient and surgeon exposure to ionizing radiation. Spine (Phila Pa 1976) 33(18):1970–1976 Singer G (2005) Occupational radiation exposure to the surgeon. J Am Acad Orthop Surg 13(1):69–76 Mulconrey DS (2016) Fluoroscopic radiation exposure in spinal surgery: in vivo evaluation for operating room personnel. Clin Spine Surg 29(7):E331–E335 Alonso JA et al (2001) Scattered radiation during fixation of hip fractures. Is distance alone enough protection? J Bone Jt Surg Br 83(6):815–818 Theocharopoulos N et al (2003) Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. J Bone Jt Surg Am 85-A(9): 1698–1703 Smith DL et al (2013) Radiation exposure during continuous and pulsed fluoroscopy. J Endourol 27(3):384–388 Merloz P et al (2007) Fluoroscopy-based navigation system in spine surgery. Proc Inst Mech Eng H 221(7):813–820 Tjardes T et al (2010) Image-guided spine surgery: state of the art and future directions. Eur Spine J 19(1):25–45 Sagi HC et al (2003) Electromagnetic field-based image-guided spine surgery part two: results of a cadaveric study evaluating thoracic pedicle screw placement. Spine (Phila Pa 1976) 28(17):E351–E3514 Allam Y et al (2013) Computer tomography assessment of pedicle screw placement in thoracic spine: comparison between free hand and a generic 3D-based navigation techniques. Eur Spine J 22(3):648–653 Bledsoe JM et al (2009) Accuracy of upper thoracic pedicle screw placement using three-dimensional image guidance. Spine J 9(10):817–821 Van de Kelft E et al (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976) 37(25):E1580–E1587 Mason A et al (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 20(2):196–203 Richter PH et al (2016) Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury 47(2):402–407 Gebhard FT et al (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine (Phila Pa 1976) 31(17):2024–2027 (discussion 2028) Izadpanah K et al (2009) Computer navigation in balloon kyphoplasty reduces the intraoperative radiation exposure. Spine (Phila Pa 1976) 34(12):1325–1329 Kim CW et al (2008) Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 8(4):584–590 Slomczykowski M et al (1999) Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine (Phila Pa 1976) 24(10):975–982 (discussion 983) Richter PH et al (2015) One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room. Injury 46 Suppl 4:S129–S134 Lester JD, Hsu S, Ahmad CS (2012) Occupational hazards facing orthopedic surgeons. Am J Orthop (Belle Mead NJ) 41(3):132–139 Payer M (2011) “Minimally invasive” lumbar spine surgery: a critical review. Acta Neurochir (Wien) 153(7):1455–1459 Bronsard N et al (2013) Comparison between percutaneous and traditional fixation of lumbar spine fracture: intraoperative radiation exposure levels and outcomes. Orthop Traumatol Surg Res 99(2):162–168 Racadio J et al (2014) Effect of real-time radiation dose feedback on pediatric interventional radiology staff radiation exposure. J Vasc Interv Radiol 25(1):119–126 Muller MC et al (2014) Evaluation of radiation exposure of personnel in an orthopaedic and trauma operation theatre using the new real-time dosimetry system “dose aware”. Z Orthop Unfall 152(4):381–388 Baumgartner R et al (2016) Reduction of radiation exposure from c-arm fluoroscopy during orthopaedic trauma operations with introduction of real-time dosimetry. J Orthop Trauma 30(2):e53–e58 Smith HE et al (2008) Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 31(5):532–537 Kraus MD et al (2010) Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop Relat Res 468(9):2419–2429 Kulkarni AG et al (2016) Minimal invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion. Indian J Orthop 50(5):464–472 Wild MH et al (2007) Five-year follow-up examination after purely minimally invasive posterior stabilization of thoracolumbar fractures: a comparison of minimally invasive percutaneously and conventionally open treated patients. Arch Orthop Trauma Surg 127(5):335–343 Kreinest M et al (2017) Analysis of complications and perioperative data after open or percutaneous dorsal instrumentation following traumatic spinal fracture of the thoracic and lumbar spine: a retrospective cohort study including 491 patients. Eur Spine J 26(5):1535–1540 Grass R et al (2006) [Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study]. Unfallchirurg 109(4):297–305