Radiation effects in SiC for nuclear structural applications

Current Opinion in Solid State and Materials Science - Tập 16 Số 3 - Trang 143-152 - 2012
Yutai Katoh1, Lance L. Snead1, Izabela Szlufarska2, William J. Weber3,1
1Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
2Department of Materials Science & Engineering, University of Wisconsin, Madison, 1509 University Avenue, Madison, WI 53706-1595, USA
3Department of Materials Science and Engineering, University of Tennessee, 1321 White Avenue, Knoxville, TN 37996, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vashishta, 2007, Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide, J Appl Phys, 101, 103515, 10.1063/1.2724570

Tersoff, 1989, Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys Rev B, 39, 5566, 10.1103/PhysRevB.39.5566

Daw, 1984, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys Rev B, 29, 6443, 10.1103/PhysRevB.29.6443

Bockstedte, 2003, Signature of intrinsic defects in SiC: Ab initio calculation of hyperfine tensors, Phys Rev B, 67, 193102, 10.1103/PhysRevB.67.193102

Shrader, 2011, Ag diffusion in cubic silicon carbide, J Nucl Mater, 408, 257, 10.1016/j.jnucmat.2010.10.088

Devanathan, 1998, Computer simulation of a 10keV Si displacement cascade in SiC, Nucl Instrum Methods Phys Res B, 141, 118, 10.1016/S0168-583X(98)00084-6

Swaminathan, 2011, Ab initio based rate theory model of radiation induced amorphization in SiC, J Nucl Mater, 414, 431, 10.1016/j.jnucmat.2011.05.024

Weber, 2010, Irradiation-induced defect clustering and amorphization in silicon carbide, J Mater Res, 25, 2349, 10.1557/jmr.2010.0292

Yun, 2002, Modeling chemical and topological disorder in irradiation-amorphized silicon carbide, Nucl Instrum Methods Phys Res B, 191, 74, 10.1016/S0168-583X(02)00516-5

Kondo, 2011, Analysis of grain boundary sinks and interstitial diffusion in neutron-irradiated SiC, Phys Rev B, 83, 075202, 10.1103/PhysRevB.83.075202

Gao, 2009, Defect-enhanced charge transfer by ion-solid interactions in SiC using large scale ab initio molecular dynamics simulations, Phys Rev Lett, 103, 027405, 10.1103/PhysRevLett.103.027405

Weber, 2000, Models and mechanisms of irradiation-induced amorphization in ceramics, Nucl Instrum Methods Phys Res B, 166–167, 98, 10.1016/S0168-583X(99)00643-6

Rong, 2007, Monte Carlo simulations of defect recovery within a 10keV collision cascade in 3C-SiC, J Appl Phys, 102, 103508, 10.1063/1.2812701

Swaminathan, 2010, Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC, Acta Mater, 58, 2843, 10.1016/j.actamat.2010.01.009

Gao, 2010, Energy dissipation and defect generation in nanocrystalline silicon carbide, Phys Rev B, 81, 184101, 10.1103/PhysRevB.81.184101

Swaminathan, 2012, Radiation interaction with tilt grain boundaries in beta-SiC, J Appl Phys, 111, 054918, 10.1063/1.3693036

P.A. Demkowicz, J.D. Hunn, R.N. Morris, J. Harp, C.A. Baldwin, P. Winston, S. Ploger, F.C. Montgomery, preliminary evaluation of fission product release from AGR-1 coated particles, in: American Nuclear Society 2012 Annual Meeting - Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, Chicago; 2012.

Booth, 1957

de Bellefon, 2011, Kinetic Monte Carlo (KMC) simulation of fission product silver transport through TRISO fuel particle, J Nucl Mater, 413, 122, 10.1016/j.jnucmat.2011.04.010

Schuck, 2011, Ab initio study of the adsorption, migration, clustering, and reaction of palladium on the surface of sillicon carbide, Phys Rev B, 83, 10.1103/PhysRevB.83.125303

Shrader, 2012, Cs diffusion in cubic silicon carbide, J Nucl Mater, 421, 89, 10.1016/j.jnucmat.2011.11.051

Khalil, 2011, Diffusion of Ag along Sigma3 grain boundaries in 3C-SiC, Phys Rev B, 84, 214104, 10.1103/PhysRevB.84.214104

Xiao, 2012, Near-surface and bulk behavior of Ag in SiC, J Nucl Mater, 420, 123, 10.1016/j.jnucmat.2011.09.028

Snead, 2005, Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation, J Nucl Mater, 340, 187, 10.1016/j.jnucmat.2004.11.009

Li, 1998, Atomistic modeling of finite-temperature properties of crystalline b-SiC; II. Thermal conductivity and effects of point defects, J Nucl Mater, 255, 139, 10.1016/S0022-3115(98)00034-8

Crocombetter, 2011, Thermal conductivity degradation induced by point defects in irradiated silicon carbide, Appl Phys Lett, 98, 191905, 10.1063/1.3589358

Wojdyr, 2010, Energetic and structure of 〈001〉 tilt grain boundaries in SiC, Model Simul Mater Sci Eng, 18, 075009, 10.1088/0965-0393/18/7/075009

Evans, 1994, The physics and mechanics of fiber-reinforced brittle matrix composites, J Mater Sci, 29, 3857, 10.1007/BF00355946

Katoh, 2006, Property tailorability for advanced CVI silicon carbide composites for fusion, Fusion Eng Des, 81, 937, 10.1016/j.fusengdes.2005.08.045

Ishikawa, 1998, Experimental stress/strain behavior of SiC-matrix composites reinforced with Si-Ti-C-O fibers and estimation of matrix elastic modulus, Compos Sci Technol, 58, 51, 10.1016/S0266-3538(97)00096-1

S. Grover, Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor, in: International Conference on High Temperature Reactor Technology 2010, Prague, Czech, 2010.

Kondo, 2008, Microstructural defects in SiC neutron irradiated at very high temperatures, J Nucl Mater, 382, 160, 10.1016/j.jnucmat.2008.08.013

Katoh, 2006, Microstructural development in cubic silicon carbide during irradiation at elevated temperatures, J Nucl Mater, 351, 228, 10.1016/j.jnucmat.2006.02.007

Snead, 2007, Swelling of SiC at intermediate and high irradiation temperatures, J Nucl Mater, 367, 677, 10.1016/j.jnucmat.2007.03.097

Byun, 2007, Miniaturized fracture stress tests for thin-walled tubular SiC specimens, J Nucl Mater, 367, 653, 10.1016/j.jnucmat.2007.03.014

Snead, 2007, Handbook on SiC properties for fuel performance modeling, J Nucl Mater, 371, 329, 10.1016/j.jnucmat.2007.05.016

G.K. Miller, D.A. Petti, J.T. Maki, Development Of An Integrated Performance Model For Triso-Coated Gas Reactor Particle Fuel, in: HTR-T 2002 meeting, Petten, Netherlands, April 2002.

L.L. Snead, K.A. Terrani, F. Venneri, Y. Kim, J.E. Tulenko, C.W. Forsberg, P.F. Peterson, E.J. Lahoda, Fully ceramic microencapsulated fuels: a transformational technology for present and next generation reactors – properties and fabrication of FCM fuel, Transaction American Nuclear Society, Submitted for publication.

Stinton, 1983, Immobilization of radioactive cesium in pyrolytic-carbon-coated zeolite, J Am Ceram Soc, 66, 389, 10.1111/j.1151-2916.1983.tb10066.x

Stinton, 1982, Coating of crystalline nuclear waste forms to improve chemical inertness., J Am Ceram Soc, 65, 394, 10.1111/j.1151-2916.1982.tb10491.x

Strachan D, Henager CH, Bryan SA, Levitskaia TG, Matya J, Thallapally PK, Scheele RD, Weber WJ, Zheng F. Processes for removal and immobilization of 14C, 129Cs, and 85Kr. -18852, Report PNNL Pacific Northwest National Laboratory, Richland, WA; 2009.

Verral, 1999, Silicon carbide as an inert matrix for a thermal reactor fuel, J Nucl Mater, 274, 54, 10.1016/S0022-3115(99)00089-6

Sarma, 2006, New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels, J Nucl Mater, 352, 324, 10.1016/j.jnucmat.2006.02.090

Rodriguez, 2003, Deep-Burn: making nuclear waste transmutation practical., Nucl Eng Des, 222, 299, 10.1016/S0029-5493(03)00034-7

Powers, 2010, A review of TRISO fuel performance models, J Nucl Mater, 405, 74, 10.1016/j.jnucmat.2010.07.030

Versluis RM, Venneri F, Petti D, Snead LL, McEachern D. Project deep-burn: development of transuranic fuel for high-temperature helium cooled reactors, in: HTR-2008, Washington DC; 2008. p. 58325.

Fenici, 1998, Current status of SiC/SiC composite R&D, J Nucl Mater, 258–263, 215, 10.1016/S0022-3115(98)00303-1

Fukuda, 1978, Diffusion behavior of fission product in pyrolytic silicon carbide, J Nucl Mater, 75, 131, 10.1016/0022-3115(78)90037-5

Schenk, 1991, High-temperature reactor fuel fission product release and distribution at 1600–1800°C, Nucl Technol, 96, 323, 10.13182/NT96-3-323

Audren, 2007, Ion implantation of Cs into silicon carbide: damage production and diffusion behaviour, Nucl Instrum Methods Phys Res B, 257, 227, 10.1016/j.nimb.2007.01.005

Audren, 2008, Ion implantation of iodine into silicon carbide: Influence of temperature on the produced damage and on the diffusion behaviour, Nucl Instrum Methods Phys Res B, 266, 2810, 10.1016/j.nimb.2008.03.123

Friedland, 2009, Study of silver diffusion in silicon carbide, J Nucl Mater, 389, 326, 10.1016/j.jnucmat.2009.02.022

Moissan, 1904, Nouvelles recherches sur la météorité de Cañon Diablo, Comptes rendus, 139, 773

Bauer, 1963, Natural α-silicon carbide, Am Miner, 48, 620

Nicolussi, 1997, S-Process zirconium in presolar silicon carbide grains, Science, 277, 1281, 10.1126/science.277.5330.1281

McEachern DW, Wu W, Venneri F. Performance of PyC, SiC and ZrC coatings in the geologic repository. Nucl Eng Des, in press.

Kirch, 1990, Storage and final disposal of spent HTR fuel in the federal Republic of Germany, Nucl Eng Des, 121, 241, 10.1016/0029-5493(90)90109-B

Fachinger, 2006, Behaviour of spent HTR fuel elements in aquatic phases of repository host rock formations, Nucl Eng Des, 236, 543, 10.1016/j.nucengdes.2005.11.023

Peterson, 2011, Modeling spent TRISO fuel for geological disposal: corrosion and failure under oxidizing conditions in the presence of water, Progr Nucl Energy, 53, 278, 10.1016/j.pnucene.2010.12.003

Cheng, 2011, The effects of oxygen, carbon dioxide and water vapor on reprocessing silicon carbide inert matrix fuels by corrosion in molten potassium carbonate, J Nucl Mater, 411, 126, 10.1016/j.jnucmat.2011.01.041

Inui, 1989, Electron irradiation induced crystalline-amorphous transition in ceramics, Acta Metall, 37, 1337, 10.1016/0001-6160(89)90163-6

Weber, 2008, Effects of dynamic recovery on amorphization kinetics in 6H-SiC, Nucl Instrum Methods Phys Res B, 266, 2793, 10.1016/j.nimb.2008.03.119

Gao, 2003, Recovery of close Frenkel pairs produced by low energy recoils in SiC, J Appl Phys, 94, 4348, 10.1063/1.1605254

Snead, 2000, Evaluation of neutron irradiated near-stoichiometric silicon carbide fiber composites, J Nucl Mater, 283, 551, 10.1016/S0022-3115(00)00235-X

Hinoki, 2002, The effect of high dose/high temperature irradiation on high purity fibers and their silicon carbide composites, J Nucl Mater, 307, 1157, 10.1016/S0022-3115(02)01054-1

Yueh, 2010, Clad in Clay, Nucl Eng Int, 14

Katoh, 2011, Mechanical properties of advanced SiC fiber composites irradiated at very high temperatures, J Nucl Mater, 417, 416, 10.1016/j.jnucmat.2011.02.006

Ferraris, 2011, Joining of SiC-based materials for nuclear energy applications, J Nucl Mater, 417, 379, 10.1016/j.jnucmat.2010.12.160

Katoh, 2007, Irradiation creep of chemically vapor deposited silicon carbide as estimated by bend stress relaxation method, J Nucl Mater, 367, 758, 10.1016/j.jnucmat.2007.03.086

Katoh Y, Snead LL, Burchell TD, Windes WE. Composite materials for high temperature reactors: technology development roadmap. In: 5th International conference on high temperature reactor technology, Prague; 2010.

Katoh, 2011, Stability of SiC and its composites at high neutron fluence, J Nucl Mater, 417, 400, 10.1016/j.jnucmat.2010.12.088

Jones, 2005, Subcritical crack growth processes in SiC/SiC ceramic matrix composites, J Eur Ceram Soc, 25, 1717, 10.1016/j.jeurceramsoc.2004.12.015

Forsberg CW. Goals, requirements, and design implications for the advanced high-temperature reactor. In: 14th International conference on nuclear energy, american society of mechanical engineers, American Society of Mechanical Engineers, Miami, Florida; 2006.

Zinkle, 2005, Fusion materials science: overview of challenges and recent progress, Phys Plasmas, 12, 10.1063/1.1880013

Giancarli, 2002, Progress in blanket designs using SiCf/SiC composites, Fusion Eng Des, 61–62, 307, 10.1016/S0920-3796(02)00213-2

Pint, 2007, Investigation of Pb–Li compatibility issues for the dual coolant blanket concept, J Nucl Mater, 367–370, 1150, 10.1016/j.jnucmat.2007.03.206

Sawan M, Katoh Y, Snead LL. Transmutation of silicon carbide in fusion nuclear environment. J Nucl Mater, submitted for publication.

Katoh, 2007, Current status and critical issues for development of SiC composites for fusion applications, J Nucl Mater, 367, 659, 10.1016/j.jnucmat.2007.03.032

Newsome, 2007, Evaluation of neutron irradiated silicon carbide and silicon carbide composites, J Nucl Mater, 371, 76, 10.1016/j.jnucmat.2007.05.007

Snead, 2011, Stability of 3-D carbon fiber composite to high neutron fluence, J Nucl Mater, 417, 629, 10.1016/j.jnucmat.2010.12.099

Jones, 2002, Promise and challenges of SiCf/SiC composites for fusion energy applications, J Nucl Mater, 307, 1057, 10.1016/S0022-3115(02)00976-5

Chen, 2000, Microstructural evolution of helium-implanted a-SiC, Phys Rev B, 61, 12923, 10.1103/PhysRevB.61.12923

Kondo, 2005, Synergistic effects of heavy ion and helium irradiation on microstructural and dimensional change in b-SiC, Mater Trans, 46, 1923, 10.2320/matertrans.46.1388

Snead, 2002, Experimental simulation of the effect of transmuted helium on the mechanical properties of silicon carbide, J Nucl Mater, 307–311, 1141, 10.1016/S0022-3115(02)01052-8

Katoh, 2010, Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures, J Nucl Mater, 403, 48, 10.1016/j.jnucmat.2010.06.002