Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials

Víctor H. Pino-Ramos1, Alejandro Ramos-Ballesteros1, Felipe López‐Saucedo1, Jesús Eduardo López‐Barriguete1, Gustavo H.C. Varca2, Emilio Bucio1
1Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, México, DF, Mexico
2Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitária, São Paulo, SP, 05508-000, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mulder K, Knot M (2001) A history of systems development and entrenchment. Technol Soc 23:265–286. doi: 10.1016/S0160-791X(01)00013-6

Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Jersey. ISBN 0-471-27400-3

Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814. doi: 10.1016/j.progpolymsci.2004.05.002

Bucio E, Burillo G (2009) Radiation-induced grafting of sensitive polymers. J Radioanal Nucl Chem 280:239–243. doi: 10.1007/s10967-009-0505-9

Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience Publishers, New York

Hadjichristidis N, Pispas S, Pitsikalis M, Iatrou H, Lohse DJ (2002) Encyclopedia of polymer science and technology. Graft Copolymers chapter. Wiley, New York. doi: 10.1002/0471440264.pst150

Stevens M (1999) Polymer chemistry. An Introduction, 3rd edn. Oxford University Press, New York. ISBN 0-19-512444-8

Zdyrko B, Luzinov I (2011) Polymer brushes by the ‘‘grafting to’’ method. Macromol Rapid Commun 32:859–869. doi: 10.1002/marc.201100162

Berger S, Synytska A, Ionov L, Eichhorn KJ, Stamm M (2008) Stimuli-responsive bicomponent polymer Janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41:9669–9676. doi: 10.1021/ma802089h

El-Sayed AH, Ishigaki I, Okamoto J (1981) Radiation grafting of acrylic acid onto fluorine-containing polymers. I. Kinetic study of preirradiation grafting onto poly(tetrafluoroethylene). J Appl Polym Sci 26:3117–3124. doi: 10.1002/pol.1984.170220309

Fijiki K, Tsubokawa N, Sone Y (1990) Radical grafting from carbon black. Graft copolymerization of vinyl monomers initiated by azo groups introduced onto carbon black surface. Polym J 22:661–670. doi: 10.1295/polymj.22.661

Kato K, Uchida E, Kang E-T, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Prog Polym Sci 28:209–259. doi: 10.1016/S0079-6700(02)00032-1

Chapiro A (1964) Radiation chemistry of polymers, basic mechanisms in the radiation chemistry of aqueous media. Radiat Res Suppl. 4:179–191

Ramírez-Fuentes YS, Bucio E, Burillo G (2007) Radiation-induced grafting of N-isopropylacrylamide and acrylic acid onto polypropylene films by two step method. Nucl Instrum Methods B 265:183–186. doi: 10.1016/j.nimb.2007.08.046

Hanh TT, Huy HT, Hien NQ (2015) Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water. Radiat Phys Chem 106:235–241. doi: 10.1016/j.radphyschem.2014.08.004

Tsoulfanidis N (1995) Measurement and detection of radiation, 2nd edn. Taylor & Francis, Missouri. ISBN 1-56032-317-5

Leroy C, Rancoita P-G (2009) Principles or radiation interaction in matter and detection, 2nd edn. World Scientific Publishing, Massachusetts. ISBN 9789812818270

Kimura Y, Chen J, Asano M, Maekawa Y, Katakai R, Yoshida M (2007) Nucl Instrum Methods B 263:463–467. doi: 10.1016/j.nimb.2007.07.010

Mandal DK, Bhunia H, Bajpai PK, Chaudharib CV, Dubeyb KA, Varshney L (2016) Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability. Radiat Phys Chem 123:37–45. doi: 10.1016/j.radphyschem.2016.02.011

Nasef MM, Güven O (2012) Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions. Prog Polym Sci 37:1597–1656. doi: 10.1016/j.progpolymsci.2012.07.004

Alvarez-Lorenzo C, Bucio E, Burillo G, Concheiro A (2010) Medical devices modified at the surface by Gamma-ray grafting for drug loading and delivery. Expert Opin Drug Deliv 7:173–185. doi: 10.1517/17425240903483174

Dennis GR, Garnett JL, Zilic E (2003) Cure grafting—a complementary technique to preirradiation and simultaneous processes? Radiat Phys Chem 67:391–395. doi: 10.1016/S0969-806X(03)00073-2

Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80:1358–1362. doi: 10.1016/j.radphyschem.2011.07.009

Magaña H, Palomino K, Cornejo-Bravo JM, Alvarez- Lorenzo C, Concheiro A, Bucio E (2015) Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery. Radiat Phys Chem 107:164–170. doi: 10.1016/j.radphyschem.2014.10.011

Gupta B, Jain R, Anjum N, Singh H (2006) Preirradiation grafting of acrylonitrile onto polypropylene monofilament for biomedical applications: I. Influence of synthesis conditions. Radiat Phys Chem 75:161–167. doi: 10.1016/j.radphyschem.2005.04.003

Meléndez-Ortiz HI, Varca GHC, Lugão AB, Bucio E (2015) Smart polymers and coatings obtained by ionizing radiation: synthesis and biomedical applications. OJP Chem 5:17–33. doi: 10.4236/ojpchem.2015.53003

Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586. doi: 10.1002/1097-4636(20001215)

Klier J, Scranton AB, Peppas NA (1990) Self-associating networks of poly(methacrylic acid-g-ethylene glycol). Macromolecules 23:4944–4949. doi: 10.1021/ma00225a011

Osada Y (1987) Conversion of chemical into mechanical energy by synthetic polymers (chemomechanical systems). Adv Polym Sci 82:1–46. doi: 10.1007/BFb0024041

Richardson MJ (1989) Thermal analysis. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 867–901. doi: 10.1016/B978-0-08-096701-1.00036-7

Li Z, Tang M, Dai J, Wang T, Bai R (2016) Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and swelling properties of polyacrylamide composite hydrogels. Polymer 85:67–76. doi: 10.1016/j.polymer.2016.01.025

Meléndez-Ortiz HI, Bucio E, Isoshima T, Hara M (2010) Surface characterization of binary graft copolymers (PP-g-DMAEMA)-g-NIPAAm and (PP-g-4VP)-g-NIPAAm by using SEM and AFM. Smart Coat Book Ref Am Chem Soc Publ 1050:107–120. doi: 10.1021/bk-2010-1050.ch008

Wu F, Zhang S, Chen Z, Zhang B, Yang W, Liu Z, Yang M (2016) Interfacial relaxation mechanisms in polymer nanocomposites through the rheological study on polymer/grafted nanoparticles. Polymer 90:264–275. doi: 10.1016/j.polymer.2016.03.034

Percot A, Zhu XX, Lafleur M (2000) A simple FTIR spectroscopic method for the determination of the lower critical solution temperature of N-isopropylacrylamide copolymers and related hydrogels. J Polym Sci Part B: Polym Phys 38:907–915. doi: 10.1002/(SICI)1099-0488(20000401)38:7<907:AID-POLB1>3.0.CO;2-5

Kwan S, Marić M (2016) Thermoresponsive polymers with tunable cloud point temperatures grafted from chitosan via nitroxide mediated polymerization. Polymer 86:69–82. doi: 10.1016/j.polymer.2016.01.039

Mutalik S, Suthar NA, Managuli RS, Shetty PK, Avadhani K, Kalthur G, Kulkarni RV, Thomas R (2016) Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Int J Biol Macromol 86:709–720. doi: 10.1016/j.ijbiomac.2015.11.092

Wyart Y, Georges G, Deumié C, Amra C, Moulin P (2008) Membrane characterization by optical methods: ellipsometry of the scattered field. J Membr Sci 318:145–153. doi: 10.1016/j.memsci.2008.02.039

Wu Q, Wu B (1995) Study of membrane morphology by image analysis of electron micrographs. J Membr Sci 105:113–120. doi: 10.1016/0376-7388(95)00055-H

Rieger J (2001) The glass transition temperature Tg of polymers—comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test 20:199–204. doi: 10.1016/S0142-9418(00)00023-4

Gu H, Wang C, Gong S, Mei Y, Li H, Ma W (2016) Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surf Coat Technol 292:72–77. doi: 10.1016/j.surfcoat.2016.03.014

Letellier P, Mayaffre A, Turmine M (2007) Drop size effect on contact angle explained by nonextensive thermodynamics. Young’s equation revisited. J Colloid Interface Sci 314:604–614. doi: 10.1016/j.jcis.2007.05.085

Kalia S, Sabaa MW (2013) Polysaccharide based graft copolymers. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-36566-9_2

Ferraz CC, Varca GHC, Ruiz JC, Lopes PS, Mathor MB, Lugão AB, Bucio E (2014) Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes. Radiat Phys Chem 97:298–303. doi: 10.1016/j.radphyschem.2013.12.027

Pathania D, Sharma R (2012) Synthesis and characterization of graft copolymers of methacrylic acid onto gelatinized potato starch using chromic acid initiator in presence of air. Adv Mater Lett 3:136–142. doi: 10.5185/amlett.2011.829

Zhang J, Peppas NA (2000) Synthesis and characterization of pH- and temperature-sensitive poly (methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107. doi: 10.1021/ma991398q

Tsukasa S, Kazutaka K, Takaki S, Tomoo S (1998) UCST and LCST behavior in polymer blends containing poly (methyl methacrylate-stat-styrene). Polymer 39:773–780. doi: 10.1016/S0032-3861(97)00339-X

Bucio E, Burillo G (2007) Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process. Radiat Phys Chem 76:1724–1727. doi: 10.1016/j.radphyschem.2007.02.109

Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16. doi: 10.1016/j.addr.2012.11.004

Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi: 10.1002/adma.200501612

Zhou L, Yuan W, Yuan J, Hong X (2008) Preparation of double-responsive SiO2-g-DMAEMA nanoparticles via ATRP. Mater Lett 62:1372–1375. doi: 10.1016/j.matlet.2007.08.057

Bignotti F, Penco M, Sartore L, Peroni I, Mendichi R, Casolaro M, D’Amore A (2000) Synthesis, characterization and solution behavior of thermo- and pH-responsive polymers bearing l-leucine residues in the side chains. Polymer 41:8247–8256. doi: 10.1016/S0032-3861(00)00177-4

Burillo G, Bucio E, Arenas E, Lopez GP (2007) Temperature and pH sensitive swelling behavior of binary DMAEMA/4VP grafts on polypropylene films. Macromol Mater Eng 292:214–219. doi: 10.1002/mame.200600394

Bucio E, Burillo G, Adem E, Coqueret X (2005) Temperature sensitive behavior of poly(N-isopropylacrylamide) grafted onto EB-irradiated polypropylene. Macromol Mater Eng 290:745–752. doi: 10.1002/mame.200500074

Adem E, Avalos-Borja M, Bucio E, Burillo G, Castellon FF, Cota L (2005) Surface characterization of binary grafting of AAc/NIPAAm onto poly(tetrafluoroethylene) (PTFE). Nucl Instrum Methods B 234:471–476. doi: 10.1016/j.nimb.2005.02.009

Yan L, Zhu Q, Kenkare PU (2000) Lower critical solution temperature of linear PNIPA obtained from a Yukawa potential of polymer chains. J Appl Polym Sci 78:1971–1976. doi: 10.1002/1097-4628(20001209)78:11<1971:AID-APP170>3.0.CO;2-P

Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500. doi: 10.1021/ma00062a016

Heskins M, Guillet JE (1969) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455. doi: 10.1007/s00396-012-2694-y

Grinberg VY, Dubovik AS, Kuznetsov DV, Grinberg NV, Grosberg AY, Tanaka T (2000) Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamic functions. Macromolecules 33:8685–8692. doi: 10.1021/ma000527w

Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. doi: 10.1016/j.progpolymsci.2004.08.003

Siegel RA (1993) Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics. Adv Polym Sci 109:233–267. doi: 10.1007/3-540-56791-7_6

Tonge SR, Tighe BJ (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122. doi: 10.1016/S0169-409X(01)00223-X

Stubbs M, McSheehy PMJ, Griffiths JR (1999) Causes and consequences of acidic pH in tumors: a magnetic resonance study. Adv Enzyme Regul 39:13–30. doi: 10.1016/S0065-2571(98)00018-1

Bhattacharya A (2000) Radiation and industrial polymers. Prog Polym Sci 25:371–401. doi: 10.1016/S0079-6700(00)00009-5

Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical application. Polymers 3:1215–1242. doi: 10.3390/polym3031215

Yager KG, Barrett CJ (2008) Azobenzene polymers for photonic applications. Wiley, Hoboken. doi: 10.1002/9780470439098.ch1

Andrade A, Ferreira R, Fabris J, Domingues R (2011) Coating nanomagnetic particles for biomedical applications. In: Fazel-Rezai R (ed) Biomedical engineering—frontiers and challenges. InTech, Rijeka. doi: 10.5772/19519

Contreras-García A, Alvarez-Lorenzo C, Taboada C, Concheiro A, Bucio E (2011) Stimuli-responsive networks grafted onto polypropylene for the sustained delivery of NSAIDs. Acta Biomater 7:996–1008. doi: 10.1016/j.actbio.2010.10.001

Gagliardi M (2012) In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realize coatings for drug-eluting stents. Mater Sci Eng C 32:2445–2451. doi: 10.1016/j.msec.2012.07.020

Li X, Li P, Saravanan R, Basu A, Mishra B, Lim SH, Su X, Tambyah PA, Leong SS (2014) Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 10:258–266. doi: 10.1016/j.actbio.2013.09.009

Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7:1431–1440. doi: 10.1016/j.actbio.2010.11.005

Kho K, Cheow WS, Lie RH, Hadinoto K (2010) Aqueous re-dispersibility of spray-dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled antibiofilm therapy. Powder Technol 203:432–439. doi: 10.1016/j.powtec.2010.06.003

Adal KA, Farr BM (1996) Central venous catheter-related infections: a review. Nutrition 12:208–213. doi: 10.1016/S0899-9007(96)91126-0

Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B 60:137–157. doi: 10.1016/j.colsurfb.2007.06.019

Takashima K, Shimomura R, Kitou T, Terada H, Yoshinaka K, Ikeuchi K (2007) Contact and friction between catheter and blood vessel. Tribol Int 40:319–328. doi: 10.1016/j.colsurfb.2007.06.019

Oehr C (2003) Plasma surface modification of polymers for biomedical use. Nucl Instrum Methods B 208:40–47. doi: 10.1016/S0168-583X(03)00650-5

Bilek MMM (2014) Biofunctionalization of surfaces by energetic ion implantation: review of progress on applications in implantable biomedical devices and antibody microarrays. Appl Surf Sci 310:3–10. doi: 10.1016/j.apsusc.2014.03.097

Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019. doi: 10.1021/la104607g

Melendez-Ortiz HI, Díaz-Rodríguez P, Alvarez-Lorenzo C, Concheiro A, Bucio E (2014) Binary graft modification of polypropylene for anti-inflammatory drug-device combo products. J Pharm Sci 103:1269–1277. doi: 10.1021/la104607g

Buddy D (1995) Polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron 10:797–804. doi: 10.1016/0956-5663(95)99218-A

Nowatzki PJ, Koepsel RR, Stoodley P, Min K, Harper A, Murata H, Donfack J, Hortelano ER, Ehrlich GD, Russell AJ (2012) Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater 8:1869–1880. doi: 10.1016/j.actbio.2012.01.032

Aguilar MR, San Román J (2014) Introduction to smart polymers and their applications. Smart Polym Appl. doi: 10.1533/9780857097026.1 (chapter 1)

Primo GA, Alvarez-Igarzabal CI, Pino GA, Ferrero JC, Rossa M (2016) Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation. Appl Surf Sci 369:422–429. doi: 10.1016/j.apsusc.2016.02.047

Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19:6912. doi: 10.1021/la034032m

Desai NP, Hossainy SFA, Hubell JA (1992) Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13:417–420. doi: 10.1016/0142-9612(92)90160-P

Kohnen W, Jansen B, Ruiten D, Steinhauser H (1994) Novel antiinfective biomaterials by polymer modification. In: Gebelein CG, Carraher CE (eds) Biotechnology and Bioactive Polymers. Springer US, Boston, MA, pp 317–325. doi: 10.1007/978-1-4757-9519-6_31

Moore LE, Ledder RG, Gilbert P, McBain AJ (2008) In vitro study of the effect of cationic biocides on bacterial population dynamics and susceptibility. Appl Environ Microbiol. doi: 10.1128/AEM.00573-08

Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent non-leaching antibacterial surfaces-2: how high density cationics surfaces kill bacterial cells. Biomaterials 28:4870–4879. doi: 10.1016/j.biomaterials.2007.06.012

Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP (2012) Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 179–182:142–149. doi: 10.1016/j.cis.2012.06.015

Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B 60:137–157. doi: 10.1016/j.colsurfb.2007.06.019

Seedat N, Kalhapure RS, Mocktar C, Vepuri S, Jadhav M, Soliman M, Govender T (2016) Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid–polymer hybrid nanoparticles: in vitro and in silico studies. Mater Sci Eng C 61:616–630. doi: 10.1016/j.msec.2015.12.053

Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8:1670–1684. doi: 10.1016/j.actbio.2012.01.011

Maki DG, Tambyah PA (2001) Engineering out the risk of infection with urinary catheters. Emerg Infect Dis 7:342–347. doi: 10.3201/eid0702.700342

Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304. doi: 10.1016/j.tibtech.2013.01.017

Patriciu A, Mazilu D, Bagga HS, Petrisor D, Kavoussi L, Stoianovici D (2007) An evaluation method for the mechanical performance of guide-wires and catheters in accessing the upper urinary tract. Med Eng Phys 29:918–922. doi: 10.1016/j.medengphy.2006.09.002

Tanaka N, Bohnenberger S, Kunkelmann T, Munaro B, Ponti J, Poth A, Sabbioni E, Sakai A, Salovaara S, Sasaki K, Thomas BC, Umeda M (2012) Prevalidation study of the BALB/c 3T3 cell transformation assay for assessment of carcinogenic potential of chemicals. Mutat Res/Genet Toxicol Environ Mutagen 744:20–29. doi: 10.1016/j.mrgentox.2011.12.008

Saxena S, Ray AR, Kapil A, Pavon-Djavid G, Letourneur D, Gupta B, Meddahi-Pelle A (2011) Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromol Biosci 11:373–382. doi: 10.1002/mabi.201000298

Pillai CKS, Sharma CP (2010) Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25:291–366. doi: 10.1177/0885328210384890

Viju S, Thilagavathi G (2011) Effect of chitosan coating on the characteristics of silk-braided sutures. J Ind Text 42:256–268. doi: 10.1177/1528083711435713

Chu CC, von Fraunhofer JA, Greisler HP (1996) Wound closure biomaterials and devices. CRC Press, Florida

National Institute for Health and Clinical Excellence (2008) Rozzelle and collection. http://www.ncbi.nlm.nih.gov/books/NBK11822/ . Accessed April 2016

Li Y, Kumar KN, Dabkowski JM, Corrigan M, Scott RW, Nüsslein K, Tew GN (2012) New bactericidal surgical suture coating. Langmuir 28:12134–12139. doi: 10.1021/la302732w

Gupta B, Jain R, Singh H (2008) Preparation of antimicrobial sutures by preirradiation grafting onto polypropylene monofilament. Polym Adv Technol 19:1698–1703. doi: 10.1002/pat.1146

García-Vargas M, González-Chomón C, Magariños B, Concheiro A, Alvarez-Lorenzo C, Bucio E (2014) Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. Int J Pharm 461:286–295. doi: 10.1016/j.ijpharm.2013.11.060

Jain R, Gupta B, Anjum N, Revagade N, Singh H (2004) Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. II. mechanical, physical, and thermal characteristics. J Appl Polym Sci 93:1224–1229. doi: 10.1002/app.20543

Saxena S, Ray AR, Gupta B (2010) Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma. J Appl Polym Sci 116:2884–2892. doi: 10.1002/app.31823

Gupta B, Jain R, Nishat Anjum N, Singh H (2004) Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. III. hydrolysis of the grafted suture. J Appl Polym Sci 94:2509–2516. doi: 10.1002/app.21211

Gupta B, Anjum N, Gulrez SKH, Singh H (2007) Development of antimicrobial polypropylene sutures by graft copolymerization. II. Evaluation of physical properties, drug release, and antimicrobial activity. J Appl Polym Sci 103:3534–3538. doi: 10.1002/app.24360

Bronzino J, Peterson D (2008) The biomedical engineering handbook. 3rd Edition. CRC Press Taylor & Francis Group, Boca Raton, Florida. ISBN 9781439825334

Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford. ISBN 0-19-854724-2. doi: 10.1016/S0003-2670(00)85361-1

Ponmozhi J, Torres-Marques CF, Frazão O (2012) Smart sensors/actuators for biomedical applications: review. Measurement 45:1675–1688. doi: 10.1016/j.measurement.2012.02.006

Razzak M, Darwis D, Zainuddin Sukirno (2001) Irradiation of PVA and PVP blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113. doi: 10.1016/S0969-806X(01)00427-3

Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, Shi M, Bian Z, Liu Z, Kim YS, Yeo WH, Park JS, Song J, Li Y, Huang Y, Gorbach AM, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944. doi: 10.1038/nmat3755

Kobayashi M, Chang Y, Oka M (2005) In vivo study of PVA hydrogel artificial meniscus. Biomaterials 26(16):3243–3248. doi: 10.1016/j.biomaterials.2004.08.028

Ottenbrite RM, Park K, Okano T (2010) Biomedical applications of hydrogels handbook. Springer, New York. ISBN 978-1-4419-5918-8. doi: 10.1007/978-1-4419-5919-5

Carretta N, Tricoli V, Pichionni F (2000) Ionomeric membranes based on partially sulfonated PS: synthesis, proton conduction and methanol permeation. J Membr Sci 166:189–197. doi: 10.1016/S0376-7388(99)00258-6

Ouyang J, Chu C, Chen F, Xu Q, Yang Y (2005) High conductivity poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater 15:203–208. doi: 10.1002/adfm.200400016

Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353. doi: 10.1016/j.actbio.2014.02.015

Wang X, Uchiyama S (2013) Polymers for biosensors construction. In: Rinken T (eds) State of the art in biosensors – general aspects. InTech. doi: 10.5772/54428 (chapter 3)

Guimard N, Gomez N, Schmidt C (2007) Conduction polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi: 10.1016/j.progpolymsci.2007.05.012

Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51:6025–6037. doi: 10.1016/j.electacta.2005.11.052

Vernitskaya TV, Efimov ON (1997) Polypirrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66(5):443–457. doi: 10.1070/RC1997v066n05ABEH000261

Sun Y, Gou G, Yang B, He M, Tian Y, Cheng J, Liu Y (2012) Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. J Mater Res 27(2):457–462. doi: 10.1557/jmr.2011.408

Weerakoon K, Shu J, Park M, Chin B (2012) Polyaniline sensors for Early detection of insect infestation. J Solid State Sci Technol 1:100–105. doi: 10.1149/2.014205jss

Loo Y, Yoo J, Cross J, Bucholz T, Lee K, Espe M (2007) Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. J Mater Chem 17:1268–1275. doi: 10.1039/b618521e

Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210. doi: 10.1063/1.97417

Clark J, Silva C, Friend R, Spano F (2007) Role of intermolecular coupling on the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys Rev Lett 98:206406. doi: 10.1103/PhysRevLett.98.206406

Muñoz-Muñoz FD, Bucio E (2013) Surface modification and functionalization of polymer materials by gamma irradiation for biomedical applications. Radiat Synth Mater Compd 10:265-301. ISBN:9781466505223

Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100. doi: 10.1016/j.smim.2007.11.004

Fukano Y, Usul ML, Underwood RA, Isenhat S, Marshall AJ, Hauch KD, Ratner BD, Olerud JE, Fleckman P (2010) Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J Biomed Mater Res 94:1172–1186. doi: 10.1002/jbm.a.32798

Marshall AJ, Ratner BD (2005) Quantitative characterization of sphere-templated porous biomaterials. AICHE 51(4):1221–1232. doi: 10.1002/aic.10390

Kasálková NS, Slepička P, Kolská Z, Hodačová P, Kučková S, Švorčík V (2014) Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res Lett 9:161. doi: 10.1186/1556-276X-9-161

Halstenberg V, Panitch A, Rizzi S, Hall H, Hubbell JA (2002) Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4):710–723. doi: 10.1021/bm015629o

Akiyama Y, Kikuchi A, Yamato M, Okano T (2004) Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20(13):5506–5511. doi: 10.1021/la036139f

Hobzova R, Pradny M, Zhunusbekova NM, Sirc J, Guryca V, Michalek J (2011) Bioactive support for cell cultivation and potential grafting. Part 1: surface modification of 2-hydroxyethyl methacrylate hydrogels for avidin immobilization. E Polymers 11(1):474–490. doi: 10.1515/epoly.2011.11.1.474

von Recum H, Okano T, Wan Kim S (1998) Growth factor release from thermally reversible tissue culture substrates. J Control Release 55(2–3):121–130. doi: 10.1016/s0168-3659(98)00042-x

Bhat RR, Chaney BN, Rowley J, Liebmann-Vinson A, Genzer J (2005) Tailoring cell adhesion using surface-grafted polymer gradient assemblies. Adv Mater 17(23):2802–2807

Ohya S, Nakayama Y, Matsuda T (2001) Material design for an artificial extracellular matrix: cell entrapment in poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel. J. Artif. Organs 4(4):308–314. doi: 10.1007/BF02480023

Ross AM, Nandivada H, Ryan AL, Lahann J (2012) Synthetic substrates for long-term stem cell culture. Polymer 53(13):2533–2539. doi: 10.1016/j.polymer.2012.03.064

Fonseca KB, Bidarra SJ, Oliveira MJ, Granja PL, Barrias CC (2011) Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater 7:1674–1682. doi: 10.1016/j.actbio.2010.12.029