Radar interferometry and its application to changes in the Earth's surface

Reviews of Geophysics - Tập 36 Số 4 - Trang 441-500 - 1998
D. Massonnet, K. L. Feigl

Tóm tắt

Geophysical applications of radar interferometry to measure changes in the Earth's surface have exploded in the early 1990s. This new geodetic technique calculates the interference pattern caused by the difference in phase between two images acquired by a spaceborne synthetic aperture radar at two distinct times. The resulting interferogram is a contour map of the change in distance between the ground and the radar instrument. These maps provide an unsurpassed spatial sampling density (∼100 pixels km−2), a competitive precision (∼1 cm), and a useful observation cadence (1 pass month−1). They record movements in the crust, perturbations in the atmosphere, dielectric modifications in the soil, and relief in the topography. They are also sensitive to technical effects, such as relative variations in the radar's trajectory or variations in its frequency standard. We describe how all these phenomena contribute to an interferogram. Then a practical summary explains the techniques for calculating and manipulating interferograms from various radar instruments, including the four satellites currently in orbit: ERS‐1, ERS‐2, JERS‐1, and RADARSAT. The next chapter suggests some guidelines for interpreting an interferogram as a geophysical measurement: respecting the limits of the technique, assessing its uncertainty, recognizing artifacts, and discriminating different types of signal. We then review the geophysical applications published to date, most of which study deformation related to earthquakes, volcanoes, and glaciers using ERS‐1 data. We also show examples of monitoring natural hazards and environmental alterations related to landslides, subsidence, and agriculture. In addition, we consider subtler geophysical signals such as postseismic relaxation, tidal loading of coastal areas, and interseismic strain accumulation. We conclude with our perspectives on the future of radar interferometry. The objective of the review is for the reader to develop the physical understanding necessary to calculate an interferogram and the geophysical intuition necessary to interpret it.

Từ khóa


Tài liệu tham khảo

10.1109/36.469475

10.1080/01431169608948740

Amelung F., 1998, Sensing Las Vegas' ups and downs: InSAR reveals structural control of land subsidence and aquifer‐system deformation (abstract), Eos Trans. AGU

Arnaud A. Etude et analyse des artefacts dans la construction de l'image interferom6trique Ph.D thesis 194 pp. Inst. Natl. Polytech. de Toulouse Toulouse France 1997.

10.1088/0266-5611/14/4/001

10.1109/36.58978

10.1023/A:1009795618839

10.1029/97RG02669

10.1029/JB086iB04p03061

Bonaccorso A., 1994, Ground deformation modelling of geodynamic activity associated with the 1991–1993 Etna eruption, Acta Vulcanol., 4, 87

10.1029/96GL03705

10.1016/0040-1951(75)90137-7

10.1130/0091-7613(1993)021<0303:MFEFOH>2.3.CO;2

California Division of Mines and Geology, 1992, Preliminary fault activity map of California

10.1126/science.170.3962.1090

10.1029/96GL03042

10.1016/0040-1951(83)90200-7

10.1029/98GL51512

Cohee B. P., 1994, Slip distribution of the 1992 Landers earthquake and its implications for earthquake source mechanics, Bull. Seismol. Soc. Am., 84, 692

10.1029/96JE01301

10.1029/95GL03176

Curlander J. C., 1995, Interferometric radar earns high marks in mapping applications, Earth Observ. Mag., 4, 52

Curlander J. C., 1991, Synthetic Aperture Radar: Systems and Signal Processing

Dammert P. B. G., 1994, Baltic Experiment for ERS‐1 (BEERS), 123

10.1029/JB091iB07p07429

10.1029/98GL02112

10.1029/91RG00152

10.1080/07038992.1993.10855152

Elachi C., 1982, Radar images of the Earth from space, Sci. Am., 247, 46

Elachi C., 1987, Introduction to the Physics and Techniques of Remote Sensing

10.1029/95EO00128

10.1029/95EO00129

Feigl K. L., 1998, RNGCHN: A program to calculate displacement components from dislocations in an elastic half‐space with applications for modeling geodetic measurements of crustal deformation, Comput. Geosci.

Feigl K. L., 1995, Seismology from space: Estimation of fault parameters by inversion of radar interferograms (abstract), Eos Trans. AGU, 76, S196

Feigl K. L., 1993, Estimation of the slip distribution in the June 28 Landers earthquake sequence by inversion of a coseismic radar interferogram (abstract), Eos Trans. AGU, 74, 183

10.1029/94GL03212

Follacci J. P., 1988, Proceedings of the Fifth International Symposium on Landslides, 1323

10.1109/36.499751

10.1029/JC095iC07p11411

Freymueller J., 1994, The coseismic slip distribution of the Landers earthquake, Bull. Seismol. Soc. Am., 84, 646, 10.1785/BSSA0840030646

10.1016/S0040-1951(96)00047-9

10.1029/97JB02382

10.1080/01431168808954901

10.1029/JB094iB07p09183

10.1109/36.298013

10.1080/01431169608948741

10.1109/IGARSS.1998.702241

10.1364/JOSAA.11.000107

10.1364/JOSAA.4.000267

10.1029/95GL02475

10.1038/328707a0

10.1029/RS023i004p00713

10.1126/science.246.4935.1282

10.1126/science.262.5139.1525

10.1109/PROC.1974.9516

10.1109/36.210459

10.1049/ecej:19950605

Griffiths H. D., 1994, Improvements in phase unwrapping algorithms for interferometric SAR, Onde Electr., 4, 46

10.1109/36.581984

10.1109/36.377933

10.1146/annurev.ea.19.050191.002031

10.1038/360251a0

10.1029/93JB02384

10.1029/95JB00865

10.1029/97GL01531

10.1029/91JB02649

Hudnut K. W., 1994, Coseismic displacements of the 1992 Landers earthquake sequence, Bull. Seismol. Soc. Am., 84, 625, 10.1785/BSSA0840030625

Hudnut K. W., 1995, Co‐seismic displacements of the 1994 Northidge, California, earthquake, Bull. Seismol. Soc. Am., 86, S49

10.1126/science.258.5086.1325

Johnson H. O., 1994, Extremal bounds on earthquake moment from geodetic data: Application to the Landers earthquake, Bull. Seismol. Soc. Am., 84, 660, 10.1785/BSSA0840030660

Jones L. E., 1994, Analysis of broadband recordings of the June 28, 1992, Big Bear earthquake: Evidence for a multiple‐source event, Bull. Seismol. Soc. Am., 85, 688, 10.1785/BSSA0850030688

10.1029/98GL50567

10.1029/95GL00264

10.1126/science.274.5285.228

10.1364/AO.33.004361

Kakkuri J., 1991, Proceedings of the 11th International Symposium on Earth Tides

10.1023/A:1003594502801

Kovaly J. J., 1976, Synthetic Aperture Radar

Kwoh L., 1994, International Geoscience and Remote Sensing Symposium 94: Surface and Atmospheric Remote Sensing: Technologies, Data Analysis, and Interpretation, 2288

10.1029/94JC00169

10.1109/36.481903

10.1029/97JC03334

Lambeck K., 1988, Geophysical Geodesy: The Slow Deformations of the Earth

10.1029/98GL00642

10.1029/95JB01052

10.1109/36.45749

10.1109/36.142934

10.1364/AO.33.000201

10.1029/96GL01262

10.1029/97GL00539

10.1109/36.377938

Madsen S. N., 1996, System for airborne SAR interferometry, Int. J. Electron. Commun., 50, 106

10.1038/345793a0

10.1029/91JC02222

10.1364/JOSAA.12.002393

10.1029/97GL00885

Massonnet D. Etude de principe d'une détection de mouvements tectoniques par radar Int. Memo. 326 Cent. Natl. d'Etudes Spatiales Toulouse France 1985.

10.1109/IGARSS.1990.688769

Massonnet D., 1992, SAR Geocoding: Data and Systems, 397

Massonnet D. Giving an operational status to SAR interferometryERS‐1 Pilot Project WorkshopEur. Space Agency Toledo SpainJune 1994.

10.1029/95GL00711

10.1029/95GL01088

10.1109/36.214922

Massonnet D., 1993, De l'Optique au Radar, les Applications de SPOT et ERS, 473

10.1038/364138a0

10.1038/369227a0

10.1109/36.297981

10.1038/375567a0

10.1109/36.377940

10.1029/96GL00729

10.1038/382612a0

10.1109/36.485126

10.1029/97GL00817

10.1029/98GL02251

10.1109/36.662741

Melchior P., 1983, The Tides of the Planet Earth

10.1029/96GL02389

Mogi K., 1958, Relations between the eruption of various volcanoes and the deformations of the ground surfaces around them, Bull. Earthquake Res. Inst. Univ. Tokyo, 36, 99

10.1109/36.406681

10.1029/95JB02912

10.1029/93GL00446

Nunnari G., 1994, Ground deformation studies during the 1991–1993 Etna eruption using GPS data, Acta Vulcanol., 4, 101

Nur A., 1972, Dilatancy, pore fluids, and premonitory motions of ts/tp travel times, Bull. Seismol. Soc. Am., 62, 1217, 10.1785/BSSA0620051217

10.1126/science.175.4024.885

Okada Y., 1985, Surface deformation to shear and tensile faults in a half‐space, Bull. Seismol. Soc. Am., 75, 1135, 10.1785/BSSA0750041135

10.1016/0034-4257(95)00045-3

10.1126/science.267.5202.1328

10.1029/97GL02318

Padgett D., 1993, Timing of past earthquakes and triggered slip events on the Lenwood fault at Soggy Lake playa relative to 1992 Landers triggered slip (abstract), Eos Trans. AGU, 74, 68

10.1364/JOSAA.11.002584

Parker B. B., 1991, Tidal Hydrodynamics

10.1126/science.268.5215.1333

10.1126/science.273.5279.1202

10.1029/98JB02302

10.1109/36.210460

10.1109/7.249119

10.1109/TGRS.1990.572968

10.1109/36.101372

10.1029/98JB01821

10.1109/36.499752

10.1109/TAES.1971.310292

10.1080/01431169208904173

10.1109/36.298008

10.1029/96GL00456

10.1126/science.281.5376.549

10.1029/94GL03381

10.1029/96JE01459

10.1029/98GL50495

10.1109/36.499788

Sandwell D. T., 1996, Multiple pass INSAR processing for geophysical applications: Stack phase gradient then unwrap (abstract), Eos Trans. AGU, 77, F52

10.1029/94JB00507

10.1029/97JC03179

10.1029/97JC00634

Scholz C. H., 1990, Earthquakes and Fault Mechanics

10.1146/annurev.earth.25.1.301

10.1126/science.178.4064.939

10.1109/36.406686

10.1029/91JC01874

10.1029/92JC02962

Shen Z., 1994, Post‐seismic deformation following the 1992 Landers earthquake, Bull. Seismol. Soc. Am., 84, 780, 10.1785/BSSA0840030780

Shen Z. K., 1996, Northridge earthquake rupture models based on the Global Positioning System measurements, Bull. Seismol. Soc. Am., 86, 537

10.1029/97EO00288

10.1126/science.260.5105.171

10.1029/97GL01934

10.1038/359687a0

Smithsonian Institution, 1991, Global Volcanism Network Bull, 16

Snyder J. P. Map Projections Used by the U.S. Geological Survey U.S. Geol. Surv. Bull. 15322 313 1992.

10.1109/83.382500

Stacy N. J. S., 1993, Earth‐based measurement of lunar topography using delayed radar, Proc. Lunar Planet. Sci. Conf., 24th, 1343

10.1126/science.258.5086.1328

10.1109/36.377941

10.1144/GSL.SP.1998.143.01.21

Tarayre H. Extraction de modèles numériques de terrain par interférométrie radar satellitaire: Algorithmie et artefacts atmosphériques Ph.D. thesis 230 pp. Inst. Natl. Polytec. de Toulouse Toulouse France 1994.

10.1029/96GL00622

10.1029/97GL02597

10.1029/93JC00429

Trouvé E. Imagerie differentielle en radar à ouverture synthétique Ph.D. Ecole Natl. Super. de Telecommun. Paris 1996.

U.S. Geological Survey (USGS), 1955, Rodman Mountains quadrangle, 15 minute series (topographic), map

10.3133/70038376

10.1126/science.266.5184.389

U.S. Geological Survey (USGS) Staff, 1992, Pattern of surface ruptures associated with the June 28, 1992, Landers earthquake, Eos Trans. AGU, 73, 357

10.1080/07038992.1995.10855167

10.1126/science.275.5297.194

The 1991–1993 Etna eruption Acta Vulcanol. 4L.Villari 1–177 1994.

10.1029/98EO00025

Wald D. J., 1994, Spatial and temporal distribution of slip for the 1992 Landers, California earthquake, Bull. Seismol. Soc. Am., 84, 668, 10.1785/BSSA0840030668

Wald D. J., 1996, A dislocation model of the 1994 Northridge, California, earthquake determined from strong‐motion, GPS and leveling‐line data, Bull. Seismol. Soc. Am., 86, S49, 10.1785/BSSA08601B0S49

10.1109/36.551930

Wicks C., 1998, Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry, Science

10.1029/98GL01136

10.1029/92GL01886

Wu C. B.Barkan B.Huneycutt C.Leans S.Pang An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery JPL Publ. 81–26 123 1981.

10.1029/JB091iB05p04993

10.1029/94JB01179

10.1364/AO.33.000201

10.1109/36.298010

10.1029/96JB03804

10.1126/science.178.4064.977

10.1007/BF00561997