Rabi oscillation study of strong coupling in a plasmonic nanocavity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Törmä, 2015, Strong coupling between surface plasmon polaritons and emitters: a review, Rep. Prog. Phys., 78, 10.1088/0034-4885/78/1/013901
Cao, 2018, Exciton-plasmon coupling interactions: from principle to applications, Nanophotonics, 7, 145, 10.1515/nanoph-2017-0059
Baranov, 2018, Novel nanostructures and materials for strong light-matter interactions, ACS Photonics, 5, 24, 10.1021/acsphotonics.7b00674
Hutchison, 2012, Modifying chemical landscapes by coupling to vacuum fields, Angew. Chem., Int. Ed. Engl., 51, 10.1002/anie.201107033
McKeever, 2003, Experimental realization of a one-atom laser in the regime of strong coupling, Nature, 425, 268, 10.1038/nature01974
Zhou, 2019, Quantum plasmonics get applied, Prog. Quantum Electron., 65, 1, 10.1016/j.pquantelec.2019.04.002
Wallraff, 2004, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, 431, 162, 10.1038/nature02851
Chang, 2006, Quantum optics with surface plasmons, Phys. Rev. Lett., 97, 10.1103/physrevlett.97.053002
Babinec, 2010, A diamond nanowire single-photon source, Nat. Nanotechnol., 5, 195, 10.1038/nnano.2010.6
Mabuchi, 2002, Cavity quantum electrodynamics: coherence in context, Science, 298, 1372, 10.1126/science.1078446
Reithmaier, 2004, Strong coupling in a single quantum dot-semiconductor microcavity system, Nature, 432, 197, 10.1038/nature02969
Thompson, 2013, Coupling a single trapped atom to a nanoscale optical cavity, Science, 340, 1202, 10.1126/science.1237125
Liu, 2016, Mode coupling and photon antibunching in a bimodal cavity containing a dipole quantum emitter, Phys. Rev. A, 93, 10.1103/physreva.93.013856
Bellessa, 2004, Strong coupling between surface plasmons and excitons in an organic semiconductor, Phys. Rev. Lett., 93, 10.1103/physrevlett.93.036404
Zhou, 2016, Silver nanoshell plasmonically controlled emission of semiconductor quantum dots in the strong coupling regime, ACS Nano, 10, 4154, 10.1021/acsnano.5b07400
Gonzalez-Tudela, 2013, Theory of strong coupling between quantum emitters and propagating surface plasmons, Phys. Rev. Lett., 110, 10.1103/physrevlett.110.126801
Chen, 2017, Mode modification of plasmonic gap resonances induced by strong coupling with molecular excitons, Nano Lett., 17, 3246, 10.1021/acs.nanolett.7b00858
Savasta, 2010, Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna, ACS Nano, 4, 6369, 10.1021/nn100585h
Hakala, 2009, Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna, Phys. Rev. Lett., 103, 10.1103/physrevlett.103.053602
Väkeväinen, 2014, Plasmonic surface lattice resonances at the strong coupling regime, Nano Lett., 14, 1721, 10.1021/nl4035219
Valmorra, 2011, Strong coupling between surface plasmon polariton and laser dye rhodamine 800, Appl. Phys. Lett., 99, 10.1063/1.3619845
Santhosh, 2016, Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit, Nat. Commun., 7, 11823, 10.1038/ncomms11823
Chikkaraddy, 2016, Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature, 535, 127, 10.1038/nature17974
Liu, 2017, Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit, Phys. Rev. Lett., 118, 10.1103/physrevlett.118.237401
Sthrenberg, 2018, Strong light-matter coupling between plasmons in individual gold bi-pyramids and excitons in mono- and multilayer WSe2, Nano Lett., 18, 5938, 10.1021/acs.nanolett.8b02652
Cuadra, 2018, Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system, Nano Lett., 18, 1777, 10.1021/acs.nanolett.7b04965
Flatten, 2017, Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2, Nat. Commun., 8, 14097, 10.1038/ncomms14097
Abid, 2017, Temperature-dependent plasmon-exciton interactions in hybrid Au/MoSe2 nanostructures, ACS Photonics, 4, 1653, 10.1021/acsphotonics.6b00957
Liu, 2016, Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice, Nano Lett., 16, 1262, 10.1021/acs.nanolett.5b04588
Wang, 2017, Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2, Nanoscale, 9, 13947, 10.1039/c7nr03909c
Wen, 2017, Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett., 17, 4689, 10.1021/acs.nanolett.7b01344
Zengin, 2015, Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions, Phys. Rev. Lett., 114, 10.1103/physrevlett.114.157401
Peng, 2017, Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances, Phys. Rev. Lett., 119, 10.1103/physrevlett.119.233901
Rousseaux, 2018, Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems, Phys. Rev. B, 98, 10.1103/physrevb.98.045435
Varguet, 2019, Non-hermitian Hamiltonian description for quantum plasmonics: from dissipative dressed atom picture to Fano states, J. Phys. B: At. Mol. Opt. Phys., 52, 5, 10.1088/1361-6455/ab008e
Kolaric, 2018, Strong light–matter coupling as a new tool for molecular and material engineering: quantum approach, Adv. Quantum Technol., 2018
Vasa, 2013, Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates, Nat. Photon., 7, 128, 10.1038/nphoton.2012.340
Jaynes, 1963, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE, 51, 89, 10.1109/proc.1963.1664
Wu, 2010, Quantum-dot-induced transparency in a nanoscale plasmonic resonator, Opt. Express, 18, 23633, 10.1364/oe.18.023633
van Vlack, 2012, Spontaneous emission spectra and quantum light-matter interaction from a strongly-coupled quantum dot metal-nanoparticle, Phys. Rev. B, 85, 10.1103/physrevb.85.075303
Hakami, 2014, Spectral properties of a strongly coupled quantum dot-metal nanoparticle system, Phys. Rev. A, 89, 10.1103/physreva.89.053835