ROS Are Good

Trends in Plant Science - Tập 22 Số 1 - Trang 11-19 - 2017
Ron Mittler1
1Department of Biological Sciences and BioDiscovery Institute, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

2007

Foyer, 2013, Redox signaling in plants, Antioxid. Redox Signal., 18, 2087, 10.1089/ars.2013.5278

Konig, 2012, Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets, Curr. Opin. Plant Biol., 15, 261, 10.1016/j.pbi.2011.12.002

Mignolet-Spruyt, 2016, Spreading the news: subcellular and organellar reactive oxygen species production and signalling, J. Exp. Bot., 67, 3831, 10.1093/jxb/erw080

Vaahtera, 2014, Specificity in ROS signaling and transcript signatures, Antioxid. Redox Signal., 21, 1422, 10.1089/ars.2013.5662

Mittler, 2011, ROS signaling: the new wave?, Trends Plant Sci., 16, 300, 10.1016/j.tplants.2011.03.007

Wood, 2003, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling, Science, 300, 650, 10.1126/science.1080405

Anbar, 2008, Elements and evolution, Science, 322, 1481, 10.1126/science.1163100

Miller, 2012, Superoxide dismutases: ancient enzymes and new insights, FEBS Lett., 586, 585, 10.1016/j.febslet.2011.10.048

Boyd, 2014, Interplay between oxygen and Fe–S cluster biogenesis: insights from the Suf pathway, Biochemistry, 53, 5834, 10.1021/bi500488r

Mittler, 2004, Reactive oxygen gene network of plants, Trends Plant Sci., 9, 490, 10.1016/j.tplants.2004.08.009

Suzuki, 2011, Respiratory burst oxidases: the engines of ROS signaling, Curr. Opin. Plant Biol., 14, 691, 10.1016/j.pbi.2011.07.014

Sumimoto, 2008, Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species, FEBS J., 275, 3249, 10.1111/j.1742-4658.2008.06488.x

Sirokmany, 2016, Nox/Duox family of NADPH oxidases: lessons from knockout mouse models, Trends Pharmacol. Sci., 37, 318, 10.1016/j.tips.2016.01.006

Laurindo, 2014, Nox NADPH oxidases and the endoplasmic reticulum, Antioxid. Redox Signal., 20, 2755, 10.1089/ars.2013.5605

Vanden Berghe, 2014, Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol., 15, 135, 10.1038/nrm3737

Xie, 2016, Ferroptosis: process and function, Cell Death Differ., 23, 369, 10.1038/cdd.2015.158

Conrad, 2016, Regulated necrosis: disease relevance and therapeutic opportunities, Nat. Rev. Drug Discov., 15, 348, 10.1038/nrd.2015.6

Slade, 2011, Oxidative stress resistance in Deinococcus radiodurans, Microbiol. Mol. Biol. Rev., 75, 133, 10.1128/MMBR.00015-10

Rocha, 1998, Characterization of a peroxide-resistant mutant of the anaerobic bacterium Bacteroides fragilis, J. Bacteriol., 180, 5906, 10.1128/JB.180.22.5906-5912.1998

Yuan, 2012, Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations, PLoS ONE, 7, e34458, 10.1371/journal.pone.0034458

Schieber, 2014, ROS function in redox signaling and oxidative stress, Curr. Biol., 24, R453, 10.1016/j.cub.2014.03.034

Truong, 2013, Redox regulation of protein kinases, Crit. Rev. Biochem. Mol. Biol., 48, 332, 10.3109/10409238.2013.790873

Reczek, 2015, ROS-dependent signal transduction, Curr. Opin. Cell Biol., 33, 8, 10.1016/j.ceb.2014.09.010

Diebold, 2016, Mitochondrial ROS regulation of proliferating cells, Free Radic. Biol. Med., 10.1016/j.freeradbiomed.2016.04.198

Cairns, 2011, Regulation of cancer cell metabolism, Nat. Rev. Cancer., 11, 85, 10.1038/nrc2981

Weinberg, 2010, Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity, Proc. Natl. Acad. Sci. U.S.A., 107, 8788, 10.1073/pnas.1003428107

Gorrini, 2013, Modulation of oxidative stress as an anticancer strategy, Nat. Rev. Drug Discov., 12, 931, 10.1038/nrd4002

Poillet-Perez, 2015, Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy, Redox Biol., 4, 184, 10.1016/j.redox.2014.12.003

West, 2011, Mitochondria in innate immune responses, Nat. Rev. Immunol., 11, 389, 10.1038/nri2975

Mittal, 2014, Reactive oxygen species in inflammation and tissue injury, Antioxid. Redox Signal 20.7, 1126, 10.1089/ars.2012.5149

West, 2011, TLR signalling augments macrophage bactericidal activity through mitochondrial ROS, Nature, 472, 476, 10.1038/nature09973

Arsenijevic, 2000, Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production, Nat. Genet., 26, 435, 10.1038/82565

Wang, 2010, Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/− mouse mutants, J. Immunol., 184, 582, 10.4049/jimmunol.0902352

Morimoto, 2013, ROS are required for mouse spermatogonial stem cell self-renewal, Cell. Stem Cell., 12, 774, 10.1016/j.stem.2013.04.001

D'Souza, 2013, Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia, Mol. Ther., 21, 42, 10.1038/mt.2012.203

Juntilla, 2010, AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species, Blood, 115, 4030, 10.1182/blood-2009-09-241000

Maryanovich, 2012, The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells, Nat. Cell Biol., 14, 535, 10.1038/ncb2468

Owusu-Ansah, 2009, Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation, Nature, 461, 537, 10.1038/nature08313

Tormos, 2011, Mitochondrial complex III ROS regulate adipocyte differentiation, Cell. Metab., 14, 537, 10.1016/j.cmet.2011.08.007

Sart, 2015, Controlling redox status for stem cell survival, expansion, and differentiation, Oxid Med. Cell. Longev, 2015, 105135, 10.1155/2015/105135

Torti, 2013, Iron and cancer: more ore to be mined, Nat. Rev. Cancer., 13, 342, 10.1038/nrc3495

Hentze, 2010, Two to tango: regulation of mammalian iron metabolism, Cell, 142, 24, 10.1016/j.cell.2010.06.028

Sohn, 2013, NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth, Proc. Natl. Acad. Sci. U.S.A., 110, 14676, 10.1073/pnas.1313198110

Akter, 2015, Cysteines under ROS attack in plants: a proteomics view, J. Exp. Bot., 66, 2935, 10.1093/jxb/erv044

Dietz, 2016, Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?, Mol. Cells, 39, 20, 10.14348/molcells.2016.2324

Delorme-Hinoux, 2016, Nuclear thiol redox systems in plants, Plant Sci., 243, 84, 10.1016/j.plantsci.2015.12.002

Passaia, 2015, Glutathione peroxidases as redox sensor proteins in plant cells, Plant Sci., 234, 22, 10.1016/j.plantsci.2015.01.017

Waszczak, 2015, Oxidative post-translational modifications of cysteine residues in plant signal transduction, J. Exp. Bot., 66, 2923, 10.1093/jxb/erv084

Apel, 2004, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant. Biol., 55, 373, 10.1146/annurev.arplant.55.031903.141701

Vanderauwera, 2011, Extranuclear protection of chromosomal DNA from oxidative stress, Proc. Natl. Acad. Sci. U.S.A., 108, 1711, 10.1073/pnas.1018359108

Hossain, 2015, Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging, Front. Plant. Sci., 6, 420, 10.3389/fpls.2015.00420

Del Rio, 2016, ROS generation in peroxisomes and its role in cell signaling, Plant Cell Physiol., 10.1093/pcp/pcw076

Sewelam, 2016, Global plant stress signaling: reactive oxygen species at the cross-road, Front. Plant. Sci., 7, 187, 10.3389/fpls.2016.00187

Julkowska, 2015, Tuning plant signaling and growth to survive salt, Trends Plant Sci., 20, 586, 10.1016/j.tplants.2015.06.008

Xia, 2015, Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance, J. Exp. Bot., 66, 2839, 10.1093/jxb/erv089

Laloi, 2015, Key players of singlet oxygen-induced cell death in plants, Front. Plant. Sci., 6, 39, 10.3389/fpls.2015.00039

Schmidt, 2015, ROS-mediated redox signaling during cell differentiation in plants, Biochim. Biophys. Acta, 1850, 1497, 10.1016/j.bbagen.2014.12.020

Wendehenne, 2014, Free radical-mediated systemic immunity in plants, Curr. Opin. Plant Biol., 20, 127, 10.1016/j.pbi.2014.05.012

Noctor, 2014, The roles of reactive oxygen metabolism in drought: not so cut and dried, Plant Physiol., 164, 1636, 10.1104/pp.113.233478

Traverso, 2013, Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives, Front. Plant. Sci., 4, 465, 10.3389/fpls.2013.00465

Frederickson Matika, 2014, Redox regulation in plant immune function, Antioxid. Redox Signal., 21, 1373, 10.1089/ars.2013.5679

Song, 2014, Behind the scenes: the roles of reactive oxygen species in guard cells, New Phytol., 201, 1121, 10.1111/nph.12565

Scheler, 2013, Nitric oxide and reactive oxygen species in plant biotic interactions, Curr. Opin. Plant Biol., 16, 534, 10.1016/j.pbi.2013.06.020

Gilroy, 2014, A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling, Trends Plant Sci., 19, 623, 10.1016/j.tplants.2014.06.013

Gilroy, 2016, ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants, Plant Physiol., 171, 1606, 10.1104/pp.16.00434

Bienert, 2014, Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide, Biochim. Biophys. Acta, 1840, 1596, 10.1016/j.bbagen.2013.09.017

Hekimi, 2011, Taking a ‘good’ look at free radicals in the aging process, Trends Cell Biol., 21, 569, 10.1016/j.tcb.2011.06.008

Ristow, 2011, Extending life span by increasing oxidative stress, Free Radic. Biol. Med., 51, 327, 10.1016/j.freeradbiomed.2011.05.010

Zuo, 2015, Biological and physiological role of reactive oxygen species--the good, the bad and the ugly, Acta Physiol. (Oxf), 214, 329, 10.1111/apha.12515

Rosing, 2004, U-rich Archaean sea-floor sediments from Greenland–indications of>3700 Ma oxygenic photosynthesis, Earth Planetary Sci. Lett., 217, 237, 10.1016/S0012-821X(03)00609-5

Blankenship, 2010, Early evolution of photosynthesis, Plant Physiol., 154, 434, 10.1104/pp.110.161687