RND pump inhibition: in-silico and in-vitro study by Eugenol on clinical strain of E. coli and P. aeruginosa

In Silico Pharmacology - Tập 11 - Trang 1-9 - 2023
Elham Etesami Ashtiani1, Zohreh Gholizadeh Siahmazgi1, Mirsasan Mirpour2, Bahram Mohammad Soltani3
1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

Tóm tắt

Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the MexA and AcrA efflux pumps in Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the MexA and AcrA genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with MexA and AcrA pumps at − 29.28 and − 28.59 Kcal.mol−1, respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (p < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in P. aeruginosa and E. coli. Analysis of the genes by real-time PCR demonstrated that the expression of MexA and AcrA genes was significantly reduced, compared to untreated bacteria (p < 0.001). The findings suggest, among other things, that eugenol may make P. aeruginosa and E. coli more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics.

Tài liệu tham khảo

Adil M, Singh K, Verma PK, Khan AU (2014) Eugenol-induced suppression of biofilm-forming genes in Streptococcus mutans: an approach to inhibit biofilms. J Glob Antimicrob Resist 2(4):286–92 Ali SQ, Zehra A, Naqvi BS, Shah S, Bushra R (2010) Resistance pattern of ciprofloxacin against different pathogens. Oman Med J 25(4):294–298 Andersen JL, He GX, Kakarla P, Ranjana KC, Kumar S, Lakra WS et al (2015) Multidrug efflux pumps from enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 12(2):1487–1547 Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S et al (2021) Strategies to tackle antimicrobial resistance: the example of escherichia coli and pseudomonas aeruginosa. Int J Mol Sci 22(9):4943 Askoura M, Mottawea W, Abujamel T, Taher I (2011) Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med 6(1):1–8 Bassetti M, Garau J (2021) Current and future perspectives in the treatment of multidrug-resistant Gram-negative infections. J Antimicrob Chemother 76:IV23–37 Biondo C (2023) Bacterial antibiotic resistance: the most critical pathogens. Pathogens 12(1):1–14 Christena LR, Mangalagowri V, Pradheeba P, Ahmed KBA, Shalini BIS, Vidyalakshmi M et al (2015) Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. RSC Adv 5(17):12899–909 Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW et al (2020) RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 15(2):143–157 Ebbensgaard AE, Løbner-Olesen A, Frimodt-Møller J (2020) The role of efflux pumps in the transition from low-level to clinical antibiotic resistance. Antibiotics 9(12):1–7 Gholampour-Azizi I, Rouhi S, Yahyayi F (2015) In vitro antifungal activity of Cucumis melo on Candida albicans. Zahedan J Res Med Sci 17:7 Glavier M, Puvanendran D, Salvador D, Decossas M, Phan G, Garnier C et al (2020) Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nat Commun 11(1):1–11 Hemaiswarya S, Doble M (2009) Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine 16(11):997–1005 Jamali N, Soureshjani EH, Mobini GR, Samare-Najaf M, Clark CCT, Saffari-Chaleshtori J (2022) Medicinal plant compounds as promising inhibitors of coronavirus (COVID-19) main protease: an in silico study. J Biomol Struct Dyn 40(17):8073–84 Jamshidi S, Sutton JM, Rahman KM (2018) Mapping the dynamic functions and structural features of AcrB Efflux pump transporter using accelerated molecular dynamics simulations. Sci Rep 8(1):1–13 Karumathil DP, Nair MS, Gaffney J, Kollanoor-Johny A, Venkitanarayanan K (2018) Trans-cinnamaldehyde and eugenol increase Acinetobacter baumannii sensitivity to beta-lactam antibiotics. Front Microbiol 9(MAY):1–10 Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602 Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine Beta-naphthylamide (PAβN) permeabilizes the outer membrane of Gram-Negative Bacteria. PLoS One 8(3):1–7 Ma J, Jiang L, Chen Y, Kang J (2017) Activities and mechanisms of eugenol and cinnamaldehyde against Legionella pneumophila. Int J Clin Exp Med 10(12):16460–16467 Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A et al (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33(2):430–449 Muniz DF, dos Santos Barbosa CR, de Menezes IRA, de Sousa EO, Pereira RLS, Júnior JTC et al (2021) In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem 337 Negi N, Prakash P, Gupta ML, Mohapatra TM (2014) Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Clin Diagnostic Res 8(10):DC04–7 Nikaido H (2010) Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol Relat Areas Mol Biol 77(111):1–60 Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta - Proteins Proteomics 1794(5):769–781 Pagès JM, Masi M, Barbe J (2005) Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11(8):382–389 Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L et al (2022) Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 7(1):1–27 Samreen, Qais FA, Ahmad I (2022) In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. J Biomol Struct Dyn 41:1–13 Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I et al (2019) In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat Commun 10(1):4–9 Siala M, Barbana A, Smaoui S, Hachicha S, Marouane C, Kammoun S et al (2017) Screening and detecting Salmonella in different food matrices in Southern Tunisia using a combined enrichment/real-time PCR method: correlation with conventional culture method. Front Microbiol 8(DEC):1–10 Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:S3-10 Wieczorek P, Sacha P, Hauschild T, Zórawski M, Krawczyk M, Tryniszewska E (2008) Multidrug resistant Acinetobacter baumannii - the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochem Cytobiol 46(3):257–267 Yadav S, Kapley A (2021) Antibiotic resistance: global health crisis and metagenomics. Biotechnol Rep 29 Yadav MK, Park SW, Chae SW, Song JJ, Kim HC (2013) Antimicrobial activities of Eugenia caryophyllata extract and its major chemical constituent eugenol against Streptococcus pneumoniae. Apmis 121(12):1198–1206 Yusuf E, Bax HI, Verkaik NJ, van Westreenen M (2021) An update on eight “new” antibiotics against multidrug-resistant gram-negative bacteria. J Clin Med 10(5):1–22