RNAstructure: software for RNA secondary structure prediction and analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Eddy SR: Non-coding RNA genes and the modern RNA world. Nature Reviews 2001, 2: 919–929. 10.1038/35103511
Mello CC, Conte D Jr: Revealing the world of RNA interference. Nature 2004, 431(7006):338–342. 10.1038/nature02872
Chow J, Heard E: X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol 2009, 21(3):359–366. 10.1016/j.ceb.2009.04.012
Wu L, Belasco JG: Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 2008, 29(1):1–7. 10.1016/j.molcel.2007.12.010
Storz G, Gottesman S: Versatile Roles of Small RNA Regulators in Bacteria. In The RNA World. third edition. Edited by: Gesteland RF, Cech TR, Atkins JF. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2006:567–594.
Tucker BJ, Breaker RR: Riboswitches as versatile gene control elements. Curr Opin Struct Biol 2005, 15: 342–348. 10.1016/j.sbi.2005.05.003
Rodnina MV, Beringer M, Wintermeyer W: How ribosomes make peptide bonds. Trends Biochem Sci 2007, 32(1):20–26. 10.1016/j.tibs.2006.11.007
Doudna J, Cech T: The chemical repertoire of natural ribozymes. Nature 2002, 418: 222–228. 10.1038/418222a
Mathews DH, Turner DH: Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 2006, 16(3):270–278. 10.1016/j.sbi.2006.05.010
Gutell RR, Lee JC, Cannone JJ: The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 2002, 12: 301–310. 10.1016/S0959-440X(02)00339-1
Pace NR, Thomas BC, Woese CR: Probing RNA structure, function, and history by comparative analysis. In The RNA World. 2nd edition. Edited by: Gesteland RF, Cech TR, Atkins JF. Cold Spring Harbor Laboratory Press; 1999:113–141.
Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH: Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick pairs. Biochemistry 1998, 37: 14719–14735. 10.1021/bi9809425
Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters provides improved prediction of RNA secondary structure. J Mol Biol 1999, 288: 911–940. 10.1006/jmbi.1999.2700
Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 2004, 101: 7287–7292. 10.1073/pnas.0401799101
Zuker M, Stiegler P: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 1981, 9: 133–148. 10.1093/nar/9.1.133
Ding Y, Chan CY, Lawrence CE: RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 2005, 11(8):1157–1166. 10.1261/rna.2500605
Ding Y, Lawrence CE: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 2003, 31(24):7280–7301. 10.1093/nar/gkg938
Lu ZJ, Gloor JW, Mathews DH: Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 2009, 15: 1805–1813. 10.1261/rna.1643609
Hamada M, Kiryu H, Sato K, Mituyama T, Asai K: Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 2009, 25(4):465–473. 10.1093/bioinformatics/btn601
Dowell RD, Eddy SR: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinformatics 2004, 5(1):71. 10.1186/1471-2105-5-71
Doshi KJ, Cannone JJ, Cobaugh CW, Gutell RR: Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 2004, 5(1):105. 10.1186/1471-2105-5-105
Mathews DH: Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 2004, 10: 1178–1190. 10.1261/rna.7650904
Mathews DH, Turner DH: Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 2002, 317: 191–203. 10.1006/jmbi.2001.5351
Harmanci AO, Sharma G, Mathews DH: PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction. Nucleic Acids Res 2008, 36: 2406–2417. 10.1093/nar/gkn043
Havgaard JH, Lyngso RB, Stormo GD, Gorodkin J: Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 2005, 21(9):1815–1824. 10.1093/bioinformatics/bti279
Hofacker IL, Fekete M, Stadler PF: Secondary structure prediction for aligned RNA sequences. J Mol Biol 2002, 319: 1059–1066. 10.1016/S0022-2836(02)00308-X
Lück R, Steger G, Riesner D: Thermodynamic prediction of conserved secondary structure: Application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein. J Mol Biol 1996, 258: 813–826. 10.1006/jmbi.1996.0289
Duan S, Mathews DH, Turner DH: Interpreting oligonucleotide microarray data to determine RNA secondary structure: application to the 3' end of Bombyx mori R2 RNA. Biochemistry 2006, 45(32):9819–9832. 10.1021/bi052618x
Deigan KE, Li TW, Mathews DH, Weeks KM: Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci USA 2009, 106(1):97–102. 10.1073/pnas.0806929106
Hart JM, Kennedy SD, Mathews DH, Turner DH: NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. J Am Chem Soc 2008, 130(31):10233–10239. 10.1021/ja8026696
Lu ZJ, Mathews DH: Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 2007, 36: 640–647. 10.1093/nar/gkm920
Lu ZJ, Mathews DH: Fundamental differences in the equilibrium considerations for siRNA and antisense oligodeoxynucleotide design. Nucleic Acids Res 2008, 36: 3738–3745. 10.1093/nar/gkn266
Mathews DH, Burkard ME, Freier SM, Wyatt JR, Turner DH: Predicting oligonucleotide affinity to nucleic acid targets. RNA 1999, 5: 1458–1469. 10.1017/S1355838299991148
Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, Hofacker IL: The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 2008, 26(5):578–583. 10.1038/nbt1404
Shao Y, Chan CY, Maliyekkel A, Lawrence CE, Roninson IB, Ding Y: Effect of target secondary structure on RNAi efficiency. RNA 2007, 13(10):1631–1640. 10.1261/rna.546207
Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y: Potent effect of target structure on microRNA function. Nat Struct Mol Biol 2007, 14(4):287–294. 10.1038/nsmb1226
Aguirre-Hernandez R, Hoos HH, Condon A: Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinformatics 2007, 8: 34. 10.1186/1471-2105-8-34
Flamm C, Hofacker IL, Maurer-Stroh S, Stadler PF, Zehl M: Design of multistable RNA molecules. RNA 2001, 7: 254–265. 10.1017/S1355838201000863
Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM: Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009, 460(7256):711–716. 10.1038/nature08237
Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA 2005, 102(7):2454–2459. 10.1073/pnas.0409169102
Uzilov AV, Keegan JM, Mathews DH: Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 2006, 7(1):173. 10.1186/1471-2105-7-173
Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J: Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res 2006, 16(7):885–889. 10.1101/gr.5226606
Mathews DH, Andre TC, Kim J, Turner DH, Zuker M: An updated recursive algorithm for RNA secondary structure prediction with improved thermodynamic parameters. In Molecular Modeling of Nucleic Acids. Edited by: Leontis NB, SantaLucia J Jr. American Chemical Society; 1998:246–257.
Zuker M: On finding all suboptimal foldings of an RNA molecule. Science 1989, 244: 48–52. 10.1126/science.2468181
Steger G, Hofmann H, Fortsch J, Gross HJ, Randles JW, Sanger HL, Riesner D: Conformational transitions in viroids and virusoids: Comparison of results from energy minimization algorithm and from experimental data. J Biomol Struct Dyn 1984, 2(3):543–571.
Harmanci AO, Sharma G, Mathews DH: Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics 2007, 8: 130. 10.1186/1471-2105-8-130
Wuchty S, Fontana W, Hofacker IL, Schuster P: Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 1999, 49: 145–165. 10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
Harmanci AO, Sharma G, Mathews DH: Stochastic sampling of the RNA structural alignment space. Nucleic Acids Res 2009, 37: 4063–4075. 10.1093/nar/gkp276
Smit S, Rother K, Heringa J, Knight R: From knotted to nested RNA structures: a variety of computational methods for pseudoknot removal. RNA 2008, 14(3):410–416. 10.1261/rna.881308
Mathews DH: RNA secondary structure analysis using RNAstructure. In Current Protocols in Bioinformatics. Edited by: Baxevanis AD, Davison DB, Page RDM, Petsko GA, Stein LD, Stormo GD. New York: John Wiley and Sons, Inc; 2006:12.16.11–12.16.14.
Mathews DH: Predicting the secondary structure common to two sequences with Dynalign. In Current Protocols in Bioinformatics. Edited by: Baxevanis AD, Davison DB, Page RDM, Petsko GA, Stein LD, Stormo GD. New York: John Wiley and Sons, Inc; 2005:12.14.11–12.14.11.
Mathews DH, Turner DH, Zuker M: RNA secondary structure prediction. In Current Protocols in Nucleic Acid Chemistry. Volume 11. Edited by: Beaucage SL, Bergstrum DE, Glick GD, Jones RA. New York: John Wiley and Sons; 2000:2.1–2.10.
Lu ZJ, Mathews DH: OligoWalk: An online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res 2008, 36: W104-W108. 10.1093/nar/gkn250
Lu ZJ, Turner DH, Mathews DH: A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation. Nucleic Acids Res 2006, 34: 4912–4924. 10.1093/nar/gkl472
Matveeva OV, Mathews DH, Tsodikov AD, Shabalina SA, Gesteland RF, Atkins JF, Freier SM: Thermodynamic criteria for high hit rate antisense oligonucleotide design. Nucleic Acids Res 2003, 31(17):4989–4994. 10.1093/nar/gkg710
Allawi HT, SantaLucia J Jr: Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 1997, 36(34):10581–10594. 10.1021/bi962590c
Allawi HT, SantaLucia J Jr: NMR solution structure of a DNA dodecamer containing single G.T mismatches. Nucleic Acids Res 1998, 26(21):4925–4934. 10.1093/nar/26.21.4925
Allawi HT, SantaLucia J Jr: Nearest-neighbor thermodynamics of internal A.C mismatches in DNA: sequence dependence and pH effects. Biochemistry 1998, 37(26):9435–9444. 10.1021/bi9803729
Allawi HT, SantaLucia J Jr: Thermodynamics of internal C.T mismatches in DNA. Nucleic Acids Res 1998, 26(11):2694–2701. 10.1093/nar/26.11.2694
Allawi HT, SantaLucia J Jr: Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA. Biochemistry 1998, 37(8):2170–2179. 10.1021/bi9724873
Peyret N, Seneviratne PA, Allawi HT, SantaLucia J Jr: Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 1999, 38: 3468–3477. 10.1021/bi9825091
Plum GE, Grollman AP, Johnson F, Breslauer KJ: Influence of the oxidatively damaged adduct 8-oxodeoxyguanosine on the conformation, energetics, and thermodynamic stability of a DNA duplex. Biochemistry 1995, 34(49):16148–16160. 10.1021/bi00049a030
Bolewska K, Zielenkiewicz A, Wierzchowski KL: Deoxydodecanucleotide heteroduplex d(TTTTATAATAAA). d(TTTATTATAAAA) containing the promoter Pribnow sequence TATAAT. I. Double-helix stability by UV spectrophotometry and calorimetry. Nucleic Acids Res 1984, 12(7):3245–3256. 10.1093/nar/12.7.3245
Breslauer KJ, Frank R, Blocker H, Marky LA: Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 1986, 83(11):3746–3750. 10.1073/pnas.83.11.3746
Leonard GA, Thomson J, Watson WP, Brown T: High-resolution structure of a mutagenic lesion in DNA. Proc Natl Acad Sci USA 1990, 87(24):9573–9576. 10.1073/pnas.87.24.9573
Tibanyenda N, De Bruin SH, Haasnoot CAG, Marel GA, Van Boom JH, Hilbers CW: The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G) .d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A). Eur J Biochem 1984, 139: 19–27. 10.1111/j.1432-1033.1984.tb07970.x
Plum GE, Grollman AP, Johnson F, Breslauer KJ: Influence of an exocyclic guanine adduct on the thermal stability, conformation, and melting thermodynamics of a DNA duplex. Biochemistry 1992, 31(48):12096–12102. 10.1021/bi00163a019
Arnold FH, Wolk S, Cruz P, Tinoco I Jr: Structure, dynamics, and thermodynamics of mismatched DNA oligonucleotide duplexes d(CCCAGGG)2 and d(CCCTGGG)2. Biochemistry 1987, 26(13):4068–4075. 10.1021/bi00387a049
Ratmeyer L, Vinayak R, Zhong YY, Zon G, Wilson WD: Sequence specific thermodynamic and structural properties for DNA.RNA duplexes. Biochemistry 1994, 33(17):5298–5304. 10.1021/bi00183a037
Williams AP, Longfellow CE, Freier SM, Kierzek R, Turner DH: Laser temperature-jump, spectroscopic, and thermodynamic study of salt effects on duplex formation by dGCATGC. Biochemistry 1989, 28(10):4283–4291. 10.1021/bi00436a025
Sugimoto N, Honda K, Sasaki M: Application of the thermodynamic parameters of DNA stability prediction to double-helix formation of deoxyribooligonucleotides. Necleosides & Nucleotides 1994, 13: 1311–1317. 10.1080/15257779408012153
Wu P, Nakano S, Sugimoto N: Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. Eur J Biochem 2002, 269(12):2821–2830. 10.1046/j.1432-1033.2002.02970.x
Hall KB, McLaughlin LW: Thermodynamic and structural properties of pentamer DNA.DNA, RNA.RNA, and DNA.RNA duplexes of identical sequence. Biochemistry 1991, 30(44):10606–10613. 10.1021/bi00108a002
Sugimoto N, Nakano S, Yoneyama M, Honda K: Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res 1996, 24(22):4501–4505. 10.1093/nar/24.22.4501
Bommarito S, Peyret N, SantaLucia J Jr: Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res 2000, 28(9):1929–1934. 10.1093/nar/28.9.1929
Senior M, Jones RA, Breslauer KJ: Influence of dangling thymidine residues on the stability and structure of two DNA duplexes. Biochemistry 1988, 27(10):3879–3885. 10.1021/bi00410a053
Aboul-ela F, Koh D, Tinoco I Jr, Martin FH: Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A, C, G, T). Nucleic Acids Res 1985, 13(13):4811–4824. 10.1093/nar/13.13.4811
Riccelli PV, Hilario J, Gallo FJ, Young AP, Benight AS: DNA and RNA oligomer sequences from the 3' noncoding region of the chicken glutamine synthetase gene from intramolecular hairpins. Biochemistry 1996, 35(48):15364–15372. 10.1021/bi9615203
Rentzeperis D, Alessi K, Marky LA: Thermodynamics of DNA hairpins: contribution of loop size to hairpin stability and ethidium binding. Nucleic Acids Res 1993, 21(11):2683–2689. 10.1093/nar/21.11.2683
Vallone PM, Paner TM, Hilario J, Lane MJ, Faldasz BD, Benight AS: Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability. Biopolymers 1999, 50(4):425–442. 10.1002/(SICI)1097-0282(19991005)50:4<425::AID-BIP8>3.0.CO;2-B
Hilbers CW, Haasnoot CA, de Bruin SH, Joordens JJ, Marel GA, van Boom JH: Hairpin formation in synthetic oligonucleotides. Biochimie 1985, 67(7–8):685–695. 10.1016/S0300-9084(85)80156-5
Antao VP, Tinoco I Jr: Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res 1992, 20: 819–824. 10.1093/nar/20.4.819
Antao VP, Lai SY, Tinoco I Jr: A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res 1991, 19: 5901–5905. 10.1093/nar/19.21.5901
Moody EM, Bevilacqua PC: Thermodynamic coupling of the loop and stem in unusually stable DNA hairpins closed by CG base pairs. J Am Chem Soc 2003, 125(8):2032–2033. 10.1021/ja029831q
Nakano M, Moody EM, Liang J, Bevilacqua PC: Selection for thermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). Biochemistry 2002, 41(48):14281–14292. 10.1021/bi026479k
LeBlanc DA, Morden KM: Thermodynamic characterization of deoxyribooligonucleotide duplexes containing bulges. Biochemistry 1991, 30(16):4042–4047. 10.1021/bi00230a031
Morden KM, Chu YG, Martin FH, Tinoco I Jr: Unpaired cytosine in the deoxynucleotide duplex dCA3CA3G.dCT6G is outside of the helix. Biochemistry 1983, 22: 5557–5563. 10.1021/bi00293a016
Li Y, Zon G, Wilson WD: Thermodynamics of DNA duplexes with adjacent G.A mismatches. Biochemistry 1991, 30(30):7566–7572. 10.1021/bi00244a028
Li Y, Agrawal S: Oligonucleotides containing G.A pairs: effect of flanking sequences on structure and stability. Biochemistry 1995, 34(31):10056–10062. 10.1021/bi00031a030
Kadrmas JL, Ravin AJ, Leontis NB: Relative stabilities of DNA three-way, four-way and five-way junctions (multi-helix junction loops): unpaired nucleotides can be stabilizing or destabilizing. Nucleic Acids Res 1995, 23: 2212–2222. 10.1093/nar/23.12.2212
Leontis NB, Kwok W, Newman JS: Stability and structure of three-way DNA junctions containing unpaired nucleotides. Nucleic Acids Res 1991, 19: 759–766. 10.1093/nar/19.4.759
Ladbury JE, Sturtevant JM, Leontis NB: The thermodynamics of formation of a three-strand, DNA three-way junction complex. Biochemistry 1994, 33(22):6828–6833. 10.1021/bi00188a011
Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M: Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 1995, 34: 11211–11216. 10.1021/bi00035a029