RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs
Tóm tắt
Từ khóa
Tài liệu tham khảo
The Global Fund [ http://www.theglobalfund.org/en/about/diseases/malaria/ ] Accessed April 21st 2015.
President’s Malaria Initiative [ http://www.pmi.gov/ ] Accessed April 21st 2015.
WHO. World malaria report. Geneva: World Health Organization; 2013.
Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot OJ, et al. Malaria resurgence: a systematic review and assessment of its causes. Malar J. 2012;11:12.
WHO. The Technical basis for coordinated action against insecticide resistance: preserving the effectiveness of modern malaria vector control. Geneva: World Health Organization; 2011.
WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012.
WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013.
Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.
Knox TB, Juma EO, Ochomo EO, Jamet HP, Ndungo L, Chege P, et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit Vectors. 2014;7:76.
Lanzaro GC, Lee Y. Speciation in Anopheles gambiae – The Distribution of Genetic polymorphism and patterns of reproductive isolation among natural populations. In S. Manguin, editor. Anopheles mosquitoes – new insights into malaria vectors. INTECH 2013. DOI: 10.5772/56232.
Norris LC, Main BJ, Lee Y, Collier TC, Fofana A, Cornel AJ, et al. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc Natl Acad Sci U S A. 2015;112:815–20.
Khambay BPS, Jewess PJ. Pyrethroids. In: Gilbert LI, Gill SS, editors. Insect control biological and synthetic agents. Oxford, UK: Elsivier; 2010. p. 1–29.
Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethoid knowdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.
Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, et al. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Natl Acad Sci U S A. 2012;109:6614–9.
David JP, Ismail HM, Chandor-Proust A, Paine MJI. Role of cytochrome P450s in insecticide resistance impact on the control of mosquito-borne diseases and use of insecticides on Earth. Phil Trans R Soc B. 2013;368:20120429.
Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet. 2008;4, e1000286.
Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, Lian LY, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol. 2011;41:492–502.
Reid WR, Zhang L, Liu F, Liu N. The transcriptome profile of the mosquito Culex quinquefasciatus following permethrin selection. PLoS One. 2012;7:e47163.
Vontas JG, Small GJ, Hemingway J. Glutathione S-transferasesas antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357:65–72.
Nkya TE, Akhouayri I, Kisinza W, David JP. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol. 2013;43:407–16.
Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S, et al. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar J. 2014;13:28.
Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors. 2010;3:67.
Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HC, et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013;67:1218–30.
Toe KH, N’Fale S, Dabire RK, Ranson H, Jones CM. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics. 2015;16:146.
Bonizzoni M, Afrane Y, Dunn WA, Atieli FK, Zhou G, Xhong D, et al. Comparative Transcriptome Analyses of Deltamethrin-Resistant and –Susceptible Anopheles gambiae Mosquitoes from Kenya by RNA-Seq. PLoS One. 2012;7, e44607.
Vulule JM, Beach RF, Atieli FK, Roberts JM, Mount DL, Mwangi RW. Reduced susceptibility of Anopheles gambiae to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. Med Vet Entomol. 1994;8:71–5.
Chuaycharoensuk T, Juntarajumnong W, Boonyuan W, Bangs MJ, Akratanakul P, Thammapalo S, et al. Frequency of pyrethroid resistance in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Thailand. J Vector Ecol. 2011;36:204–12.
Zhong D, Chang X, Zhou G, He Z, Fu F, Yan Z, et al. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis. PLoS One. 2013;8, e55475.
Balmert NJ, Rund SS, Ghazi JP, Zhou P. Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol. 2014;64:30–9.
Trizol-based RNA extraction protocol [ http://medicine.yale.edu/keck/ycga/microarrays/protocols/TRIZOLRNAIsolation_092107_tcm240-21453_tcm240-284-32.pdf ] Accessed June 25th 2015.
Scott JA, Brogdon W, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520.
DNA Technologies and Expression Analysis Core, UC Davis Genome Center [ http://expression.genomecenter.ucdavis.edu/ ].
Bioconductor package qrqc [ http://bioconductor.org/packages/release/bioc/html/qrqc.html ].
Scythe v.0.990 and Sickle v.1.200 [ https://github.com/ucdavis-bioinformatics ].
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analyses of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562.
Blacktie [ https://github.com/xguse/blacktie ].
CommeRbund [ http://www.bioconductor.org/packages/release/bioc/html/cummeRbund.html ].
VectorBase [ www.vectorbase.org ].
AnoXcel [ http://www.niaid.nih.gov/LabsAndResources/labs/aboutlabs/lmvr/Pages/TranscriptomeResources.aspx#transcriptomes %20 ].
G:Profiler [ http://biit.cs.ut.ee/gprofiler/ ].
Freebayes v. 0.9.4 [http://bioinformaticsbcedu/marthlab/FreeBayes].
SnpEff [ http://snpeff.sourceforge.net/ ].
Bonizzoni M, Britton M, Marinotti O, Dunn WA, Fass J, James AA. Probing functional polymorphisms in the dengue vector, Aedes aegypti. BMC Genomics. 2013;14:739.
Schlotterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals –mining genome wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749–63.
Paris M, Marcombe S, Coissac E, Corbel V, David JP, Despres L. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti. Evol Appl. 2013;6:1012.
Vannini L, Reed TW, Willis JH. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species. Parasit Vectors. 2014;7:24.
Pearson Correlation Coefficient Calculator [ http://www.alcula.com/calculators/statistics/correlation-coefficient/ ]
Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94:441.
Odds Ratio Calculator [ http://vassarstats.net/odds2x2.html ].
Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics. 2008;9:538.
Matowo J, Jones CM, Kabula B, Ranson H, Steen K, Mosha F, et al. Genetic basis of pyrehtroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania. Parasit Vectors. 2014;7:274.
Wilding CS, Weetman D, Rippon EJ, Steen K, Mawejje HD, Barsukov I, et al. Parallel evolution or purifying selection, not introgression, explains similarity in the pyrethroid detoxification linked GSTE4 of Anopheles gambiae and An. arabiensis. Mol Genet Genomics. 2015;290:201–15.
Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg. 2009;103:1139–45.
Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol. 2015;60:537–59.
Ranson H, Paton MG, Jensen B, McCarroll L, Vaughan A, Hogan JR, et al. Genetic mapping of genes conferring permethrin resistance in the malaria vector Anopheles gambiae. Insect Mol Biol. 2004;13:379–86.
Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, et al. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014;50:1–17.
Weetman D, Donnely M. Evolution of insecticide resistance diagnosis in malaria vectors. Trans R Soc Trop Med Hyg. 2015;109:291–3.
Gallego Romero I, Pai AA, Thung J, Gilad Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 2014;12:42.
Li T, Liu L, Zhang L, Liu N. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci Rep. 2014;4:6474.
Gong Y, Li T, Zhang L, Gao X, Liu N. Permetrhin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quniquefasciatus. Int J Biol Sci. 2013;9:863–71.
Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480.
Ingham VA, Jones CM, Pignatelli P, Balabanidou V, Vontas J, Wagstaff SC, et al. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics. 2014;15:1018.
Chen H, Githeko AK, Githure JI, Mutunga J, Zhou G, Yan G. Monooxygenase levels and knockdown resistance (kdr) allele frequencies in Anopheles gambiae and Anopheles arabiensis in Kenya. Med Vet Entomol. 2008;45:242–50.
Gnanguenon V, Agossa FR, Badirou K, Govoetchan R, Anagonou R, Oke-Agbo F, et al. Malaria vectors resistance to insecticides in Benin: current trends and mechanisms involved. Parasit Vectors. 2015;8:223.
Chouaïbou M, Zivanovic GB, Knox TB, Jamet HP, Bonfoh B. Synergist bioassays: a simple method for initial metabolic resistance investigation of field Anopheles gambiae s.l. Populations. Acta Trop. 2013;130C:108–11.
Okorie PN, Ademowo OG, Irving H, Kelly-Hope LA, Wondji CS. Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest Nigeria. Med Vet Entomol. 2015;29:44–50.
https://courseware.e-education.psu.edu/courses/earth105new/content/lesson07/03.html , accessed May 1st 2015.
Hager J, Staker BL, Bugl H, Jakob U. Active site in Rrmj, a heat shock-induced methyltransferase. J Biol Chem. 2002;277:41978–86.
Vazquez-Laslop N, Thum C, Mankin AS. Molecular mechanism of drug-dependent ribosome stalling. Mol Cell. 2008;30:190–202.
Monshupanee T, Johansen SK, Dahlberg AE, Douthwaite S. Capreomycin susceptibility is increased by TlyA-directed 2′-O-methylation on both ribosomal subunits. Mol Microbiol. 2012;85:1194–11203.
Eukaryotic Orthologous Groups (KOG) [ http://genome.jgi-psf.org/help/kogbrowser.jsf ].
SMART databases [ http://smart.embl-heidelberg.de/ ].
Nakamura MT, Nara TY. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu Rev Nutr. 2004;24:345–76.
Vallee BS, Coadou G, Labbe H, Sy D, Vovelle F, Schoentgen F. Peptides corresponding to the N- and C-terminal parts of PEBP are well-structured in solution: new insights into their possible interaction with partners in vivo. J Pept Res. 2003;61:47–57.
Kooi C, Sokol PA. Differentiation of thermolysins and serralysins by monoclonal antibodies. J Med Microbiol. 1996;45:219–25.
De Kreij A, Venema G, van den Burg B. Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids. J Biol Chem. 2000;275:31115–20.
Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamnson MS. Black WC 4th: Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol. 2009;25:213-219.
Ismail HM, O'Neill PM, Hong DW, Finn RD, Henderson CJ, Wright AT. Pyrethroid activitybased probes for profiling cytochrome P450 activities associated with insecticide interactions. Proc Natl Acad Sci U S A. 2013;110:19766-19771.