RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress

Kim Kirby1, Jianguo Hu1, Arthur J. Hilliker1, J. P. Phillips1
1Department of Molecular Biology and Genetics, University of Guelph, Guelph, ON, Canada N1G 2W1; and Department of Biology, York University, Toronto, ON, Canada M3J 1P3

Tóm tắt

Oxidative stress has been widely implicated as an important factor in the aging process. Because mitochondrial respiration is the principal source of reactive oxygen within cells, the mitochondrially localized superoxide dismutase (SOD) 2 is thought to play an important front-line defensive role against aging-related oxidative stress. Although genetic studies with mutants deficient in SOD1, the predominantly cytosolic isoform of SOD, have been instrumental in elucidating the role of reactive oxygen metabolism in aging in Drosophila , the lack of available mutations in the Sod2 gene has hampered an equivalent analysis of the participation of this important antioxidant enzyme in the Drosophila aging model. Here we report that ablation of mitochondrial SOD2 through expression of a GAL4-regulated, inverted-repeat Sod2 RNA-interference transgene in an otherwise normal animal causes increased endogenous oxidative stress, resulting in loss of essential enzymatic components of the mitochondrial respiratory chain and the tricarboxylic acid cycle, enhances sensitivity to applied oxidative stress, and causes early-onset mortality in young adults. In sharp contrast, ablation of SOD2 has no overt effect on the development of larvae and pupae, which may reflect a fundamental transition in oxygen utilization and/or reactive oxygen metabolism that occurs during metamorphosis from larval to adult life.

Từ khóa


Tài liệu tham khảo

McCord J. M. & Fridovich, I. (1969) J. Biol. Chem.244,256-275.

10.1016/S0021-9258(19)43735-6

10.1074/jbc.M105395200

10.1074/jbc.M105296200

10.1073/pnas.86.8.2761

10.1089/dna.1997.16.391

10.1073/pnas.79.24.7634

10.1073/pnas.84.18.6340

10.1126/science.287.5461.2185

10.1038/ng0596-43

10.1139/g93-134

10.1073/pnas.92.19.8574

10.1023/A:1010039813107

10.1139/g98-068

10.1126/science.8108730

10.1038/534

10.1128/MCB.19.1.216

Lee Y. M., Misra, H. P. & Ayala, F. J. (1981) Proc. Natl. Acad. Sci. USA78,2052-2055.

10.1093/nar/27.1.85

10.1038/35888

10.1073/pnas.96.4.1451

10.1038/78531

10.1016/S0960-9822(00)00631-X

Ashburner M. (1989) Drosophila: A Laboratory Handbook (Cold Spring Harbor Lab. Press Plainview NY).

10.1126/science.6289436

10.1242/dev.118.2.401

Lindsley D. L. & Zimm G. (1992) The Genome of Drosophila melanogaster (Academic New York).

10.1016/0003-2697(76)90089-0

10.1016/0003-2697(71)90370-8

10.1016/0076-6879(67)10025-6

10.1016/S0076-6879(78)53050-4

10.1016/S0021-9258(18)95824-2

10.1016/S0076-6879(02)49335-4

10.1016/S0076-6879(96)69007-7

10.1016/0006-3002(50)90026-6

10.1016/0092-8674(95)90053-5

10.1242/dev.128.23.4705

10.1073/pnas.83.11.3820

10.1074/jbc.273.47.31138

10.1016/S0021-9258(19)74369-5

10.1016/S0021-9258(18)55001-8

10.1073/pnas.91.25.12248

10.1038/ng1295-376

10.1073/pnas.93.18.9782

10.1038/ng0298-159

10.1073/pnas.96.3.846

10.1074/jbc.273.43.28510

10.1152/ajpheart.2001.281.3.H1422

10.1126/science.1063051

10.1101/gad.880001

10.1073/pnas.94.21.11168

10.1042/bj3600209

10.1091/mbc.4.1.1

10.1073/pnas.93.10.4925

10.1111/j.1432-1033.1997.00470.x

10.1046/j.1432-1327.1998.2540230.x

10.1093/genetics/161.2.661