RNA-Mediated Sequestration of the RNA Helicase eIF4A by Pateamine A Inhibits Translation Initiation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gingras, 1999, eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation, Annu. Rev. Biochem., 68, 913, 10.1146/annurev.biochem.68.1.913
Rogers, 2002, eIF4A: the godfather of the DEAD box helicases, Prog. Nucleic Acid Res. Mol. Biol., 72, 307, 10.1016/S0079-6603(02)72073-4
Yoder-Hill, 1993, The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A, J. Biol. Chem., 268, 5566, 10.1016/S0021-9258(18)53358-5
Pause, 1994, Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation, EMBO J., 13, 1205, 10.1002/j.1460-2075.1994.tb06370.x
Lamphear, 1995, Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation, J. Biol. Chem., 270, 21975, 10.1074/jbc.270.37.21975
Imataka, 1997, Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A, Mol. Cell. Biol., 17, 6940, 10.1128/MCB.17.12.6940
Korneeva, 2001, Characterization of the two eIF4A-binding sites on human eIF4G-1, J. Biol. Chem., 276, 2872, 10.1074/jbc.M006345200
Lomakin, 2000, Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation, Mol. Cell. Biol., 20, 6019, 10.1128/MCB.20.16.6019-6029.2000
Korneeva, 2005, Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity, J. Biol. Chem., 280, 1872, 10.1074/jbc.M406168200
Morino, 2000, Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region, Mol. Cell. Biol., 20, 468, 10.1128/MCB.20.2.468-477.2000
Oberer, 2005, Structural basis for the enhancement of eIF4A helicase activity by eIF4G, Genes Dev., 19, 2212, 10.1101/gad.1335305
Ray, 1985, ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors, J. Biol. Chem., 260, 7651, 10.1016/S0021-9258(17)39658-8
Rozen, 1990, Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F, Mol. Cell. Biol., 10, 1134, 10.1128/MCB.10.3.1134
Richter, 1999, Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H, J. Biol. Chem., 274, 35415, 10.1074/jbc.274.50.35415
Methot, 1994, The translation initiation factor eIF-4B contains an RNA-binding region that is distinct and independent from its ribonucleoprotein consensus sequence, Mol. Cell. Biol., 14, 2307, 10.1128/MCB.14.4.2307
Naranda, 1994, Two structural domains of initiation factor eIF-4B are involved in binding to RNA, J. Biol. Chem., 269, 14465, 10.1016/S0021-9258(17)36646-2
Methot, 1996, In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif, RNA, 2, 38
Feng, 2005, mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A, J. Virol., 79, 9651, 10.1128/JVI.79.15.9651-9664.2005
Bordeleau, 2005, Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation, Proc. Natl. Acad. Sci. USA, 102, 10460, 10.1073/pnas.0504249102
Low, 2005, Inhibition of eukaryotic translation initiation by the marine natural product pateamine A, Mol. Cell, 20, 709, 10.1016/j.molcel.2005.10.008
Grifo, 1982, Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA, J. Biol. Chem., 257, 5246, 10.1016/S0021-9258(18)34662-3
Evdokimova, 2001, The major mRNA-associated protein YB-1 is a potent 5′ cap-dependent mRNA stabilizer, EMBO J., 20, 5491, 10.1093/emboj/20.19.5491
Edery, 1984, Functional characterization of eukaryotic mRNA cap binding protein complex: effects on translation of capped and naturally uncapped RNAs, Biochemistry, 23, 2456, 10.1021/bi00306a021
Pestova, 2002, The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection, Genes Dev., 16, 2906, 10.1101/gad.1020902
Gradi, 1998, A novel functional human eukaryotic translation initiation factor 4G, Mol. Cell. Biol., 18, 334, 10.1128/MCB.18.1.334
Duncan, 1987, Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F, J. Biol. Chem., 262, 380, 10.1016/S0021-9258(19)75938-9
Wang, 2002, Dendritic BC1 RNA: functional role in regulation of translation initiation, J. Neurosci., 22, 10232, 10.1523/JNEUROSCI.22-23-10232.2002
Wang, 2005, Dendritic BC1 RNA in translational control mechanisms, J. Cell Biol., 171, 811, 10.1083/jcb.200506006
Pestova, 1996, Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry, Mol. Cell. Biol., 16, 6859, 10.1128/MCB.16.12.6859
Edery, 1983, Involvement of eukaryotic initiation factor 4A in the cap recognition process, J. Biol. Chem., 258, 11398, 10.1016/S0021-9258(17)44431-0
Methot, 1996, A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3, Mol. Cell. Biol., 16, 5328, 10.1128/MCB.16.10.5328