RIG-I Forms Signaling-Competent Filaments in an ATP-Dependent, Ubiquitin-Independent Manner

Molecular Cell - Tập 51 - Trang 573-583 - 2013
Alys Peisley1,2, Bin Wu1,2, Hui Yao2,3, Thomas Walz4,5, Sun Hur1,2
1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
2Program in Cellular and Molecular Medicine, Children’s Hospital Boston, Boston, MA 02115, USA
3Department of Biochemistry and Molecular Biology, NanKai University, Tianjin 300071, China
4Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
5Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA

Tài liệu tham khảo

Bamming, 2009, Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2, J. Biol. Chem., 284, 9700, 10.1074/jbc.M807365200 Baum, 2010, Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing, Proc. Natl. Acad. Sci. USA, 107, 16303, 10.1073/pnas.1005077107 Berke, 2012, MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA, EMBO J., 31, 1714, 10.1038/emboj.2012.19 Berke, 2012, MDA5 assembles into a polar helical filament on dsRNA, Proc. Natl. Acad. Sci. USA, 109, 18437, 10.1073/pnas.1212186109 Binder, 2011, Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I), J. Biol. Chem., 286, 27278, 10.1074/jbc.M111.256974 Davis, 1998 Feng, 2012, MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells, Cell Rep, 2, 1187, 10.1016/j.celrep.2012.10.005 Gack, 2007, TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity, Nature, 446, 916, 10.1038/nature05732 Horowitz, 1984, Mapping of N6-methyladenosine residues in bovine prolactin mRNA, Proc. Natl. Acad. Sci. USA, 81, 5667, 10.1073/pnas.81.18.5667 Hou, 2011, MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response, Cell, 146, 448, 10.1016/j.cell.2011.06.041 Jamieson, 1996, A zinc finger directory for high-affinity DNA recognition, Proc. Natl. Acad. Sci. USA, 93, 12834, 10.1073/pnas.93.23.12834 Jiang, 2011, Structural basis of RNA recognition and activation by innate immune receptor RIG-I, Nature, 479, 423, 10.1038/nature10537 Jiang, 2012, Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response, Immunity, 36, 959, 10.1016/j.immuni.2012.03.022 Kato, 2008, Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5, J. Exp. Med., 205, 1601, 10.1084/jem.20080091 Kato, 2011, RIG-I-like receptors: cytoplasmic sensors for non-self RNA, Immunol. Rev., 243, 91, 10.1111/j.1600-065X.2011.01052.x Kowalinski, 2011, Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA, Cell, 147, 423, 10.1016/j.cell.2011.09.039 Lazzarini, 1981, The origins of defective interfering particles of the negative-strand RNA viruses, Cell, 26, 145, 10.1016/0092-8674(81)90298-1 Leaver-Fay, 2011, ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules, Methods Enzymol., 487, 545, 10.1016/B978-0-12-381270-4.00019-6 Lu, 2010, The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain, Structure, 18, 1032, 10.1016/j.str.2010.05.007 Luo, 2011, Structural insights into RNA recognition by RIG-I, Cell, 147, 409, 10.1016/j.cell.2011.09.023 Makeyev, 2004, RNA-dependent RNA polymerases of dsRNA bacteriophages, Virus Res., 101, 45, 10.1016/j.virusres.2003.12.005 Myong, 2009, Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA, Science, 323, 1070, 10.1126/science.1168352 Ohi, 2004, Negative staining and image classification - powerful tools in modern electron microscopy, Biol. Proced. Online, 6, 23, 10.1251/bpo70 Peisley, 2011, Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition, Proc. Natl. Acad. Sci. USA, 108, 21010, 10.1073/pnas.1113651108 Peisley, 2012, Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments, Proc. Natl. Acad. Sci. USA, 109, E3340, 10.1073/pnas.1208618109 Schlee, 2009, Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus, Immunity, 31, 25, 10.1016/j.immuni.2009.05.008 Sekellick, 1982, Interferon induction by viruses. VIII. Vesicular stomatitis virus: [+/-]DI-011 particles induce interferon in the absence of standard virions, Virology, 117, 280, 10.1016/0042-6822(82)90530-X Shigemoto, 2009, Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes, J. Biol. Chem., 284, 13348, 10.1074/jbc.M809449200 Strahle, 2006, Sendai virus defective-interfering genomes and the activation of interferon-beta, Virology, 351, 101, 10.1016/j.virol.2006.03.022 Triantafilou, 2012, Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses, J. Cell Sci., 125, 4761, 10.1242/jcs.103887 Wang, 2010, Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I, Nat. Struct. Mol. Biol., 17, 781, 10.1038/nsmb.1863 Wu, 2013, Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5, Cell, 152, 276, 10.1016/j.cell.2012.11.048 Yoneyama, 2004, The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses, Nat. Immunol., 5, 730, 10.1038/ni1087 Zeng, 2010, Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity, Cell, 141, 315, 10.1016/j.cell.2010.03.029