RIG-I Forms Signaling-Competent Filaments in an ATP-Dependent, Ubiquitin-Independent Manner
Tài liệu tham khảo
Bamming, 2009, Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2, J. Biol. Chem., 284, 9700, 10.1074/jbc.M807365200
Baum, 2010, Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing, Proc. Natl. Acad. Sci. USA, 107, 16303, 10.1073/pnas.1005077107
Berke, 2012, MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA, EMBO J., 31, 1714, 10.1038/emboj.2012.19
Berke, 2012, MDA5 assembles into a polar helical filament on dsRNA, Proc. Natl. Acad. Sci. USA, 109, 18437, 10.1073/pnas.1212186109
Binder, 2011, Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I), J. Biol. Chem., 286, 27278, 10.1074/jbc.M111.256974
Davis, 1998
Feng, 2012, MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells, Cell Rep, 2, 1187, 10.1016/j.celrep.2012.10.005
Gack, 2007, TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity, Nature, 446, 916, 10.1038/nature05732
Horowitz, 1984, Mapping of N6-methyladenosine residues in bovine prolactin mRNA, Proc. Natl. Acad. Sci. USA, 81, 5667, 10.1073/pnas.81.18.5667
Hou, 2011, MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response, Cell, 146, 448, 10.1016/j.cell.2011.06.041
Jamieson, 1996, A zinc finger directory for high-affinity DNA recognition, Proc. Natl. Acad. Sci. USA, 93, 12834, 10.1073/pnas.93.23.12834
Jiang, 2011, Structural basis of RNA recognition and activation by innate immune receptor RIG-I, Nature, 479, 423, 10.1038/nature10537
Jiang, 2012, Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response, Immunity, 36, 959, 10.1016/j.immuni.2012.03.022
Kato, 2008, Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5, J. Exp. Med., 205, 1601, 10.1084/jem.20080091
Kato, 2011, RIG-I-like receptors: cytoplasmic sensors for non-self RNA, Immunol. Rev., 243, 91, 10.1111/j.1600-065X.2011.01052.x
Kowalinski, 2011, Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA, Cell, 147, 423, 10.1016/j.cell.2011.09.039
Lazzarini, 1981, The origins of defective interfering particles of the negative-strand RNA viruses, Cell, 26, 145, 10.1016/0092-8674(81)90298-1
Leaver-Fay, 2011, ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules, Methods Enzymol., 487, 545, 10.1016/B978-0-12-381270-4.00019-6
Lu, 2010, The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain, Structure, 18, 1032, 10.1016/j.str.2010.05.007
Luo, 2011, Structural insights into RNA recognition by RIG-I, Cell, 147, 409, 10.1016/j.cell.2011.09.023
Makeyev, 2004, RNA-dependent RNA polymerases of dsRNA bacteriophages, Virus Res., 101, 45, 10.1016/j.virusres.2003.12.005
Myong, 2009, Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA, Science, 323, 1070, 10.1126/science.1168352
Ohi, 2004, Negative staining and image classification - powerful tools in modern electron microscopy, Biol. Proced. Online, 6, 23, 10.1251/bpo70
Peisley, 2011, Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition, Proc. Natl. Acad. Sci. USA, 108, 21010, 10.1073/pnas.1113651108
Peisley, 2012, Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments, Proc. Natl. Acad. Sci. USA, 109, E3340, 10.1073/pnas.1208618109
Schlee, 2009, Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus, Immunity, 31, 25, 10.1016/j.immuni.2009.05.008
Sekellick, 1982, Interferon induction by viruses. VIII. Vesicular stomatitis virus: [+/-]DI-011 particles induce interferon in the absence of standard virions, Virology, 117, 280, 10.1016/0042-6822(82)90530-X
Shigemoto, 2009, Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes, J. Biol. Chem., 284, 13348, 10.1074/jbc.M809449200
Strahle, 2006, Sendai virus defective-interfering genomes and the activation of interferon-beta, Virology, 351, 101, 10.1016/j.virol.2006.03.022
Triantafilou, 2012, Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses, J. Cell Sci., 125, 4761, 10.1242/jcs.103887
Wang, 2010, Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I, Nat. Struct. Mol. Biol., 17, 781, 10.1038/nsmb.1863
Wu, 2013, Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5, Cell, 152, 276, 10.1016/j.cell.2012.11.048
Yoneyama, 2004, The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses, Nat. Immunol., 5, 730, 10.1038/ni1087
Zeng, 2010, Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity, Cell, 141, 315, 10.1016/j.cell.2010.03.029