RGBD deep multi-scale network for background subtraction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Camplani M, Maddalena L, Alcover GM, Petrosino A, Salgado L (2017) A benchmarking framework for background subtraction in rgbd videos. In: International conference on image analysis and processing. Springer, pp 219–229
Mandal M, Vipparthi SK (2020) Scene independency matters: an empirical study of scene dependent and scene independent evaluation for cnn-based change detection. IEEE Trans Intell Transp Syst
Tezcan MO, Ishwar P, Konrad J (2021) Bsuv-net 2.0: Spatio-temporal data augmentations for video-agnostic supervised background subtraction. IEEE Access 9:53849–53860
Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149) 2:246–252 (IEEE)
KaewTraKulPong P, Bowden R (2002) An improved adaptive background mixture model for real-time tracking with shadow detection. In: Video-based surveillance systems. Springer, pp 135–144
Zivkovic Z et al (2004) Improved adaptive gaussian mixture model for background subtraction. ICPR 2:28–31
Lee D-S (2005) Effective gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 1(5):827–832
Zivkovic Z, Van Der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780
Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: European conference on computer vision. Springer, pp 751–767
Kim K, Chalidabhongse TH, Harwood D, Davis L (2004) Background modeling and subtraction by codebook construction. In: 2004 international conference on image processing, 2004. ICIP’04 5:3061–3064 (IEEE)
Murgia J, Meurie C, Ruichek Y (2014) An improved colorimetric invariants and rgb-depth-based codebook model for background subtraction using kinect. In: Mexican international conference on artificial intelligence. Springer, pp 380–392
St-Charles P-L, Bilodeau G-A, Bergevin R (2015) A self-adjusting approach to change detection based on background word consensus. In: 2015 IEEE winter conference on applications of computer vision. IEEE, pp 990–997
Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662
Noh S, Jeon M (2012) A new framework for background subtraction using multiple cues. In: Asian conference on computer vision. Springer, pp 493–506
Bilodeau G-A, Jodoin J-P, Saunier N (2013) Change detection in feature space using local binary similarity patterns. In: 2013 international conference on computer and robot vision. IEEE, pp 106–112
St-Charles P-L, Bilodeau G-A, Bergevin R (2014) Flexible background subtraction with self-balanced local sensitivity. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 408–413
Han B, Davis LS (2011) Density-based multifeature background subtraction with support vector machine. IEEE Trans Pattern Anal Mach Intell 34(5):1017–1023
Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177
Maddalena L, Petrosino A (2010) A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Comput Appl 19(2):179–186
Maddalena L, Petrosino A (2017) Exploiting color and depth for background subtraction. In: International conference on image analysis and processing. Springer, pp 254–265
Mahadevan V, Vasconcelos N (2009) Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal Mach Intell 32(1):171–177
Wang Y, Jodoin P-M, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) Cdnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 387–394
Maddalena L, Petrosino A (2015) Towards benchmarking scene background initialization. In: International conference on image analysis and processing. Springer, pp 469–476
Braham M, Van Droogenbroeck M (2016) Deep background subtraction with scene-specific convolutional neural networks. In: 2016 international conference on systems, signals and image processing (IWSSIP). IEEE, pp 1–4
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324
Bouwmans T, Javed S, Sultana M, Jung SK (2019) Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. Neural Netw 117:8–66
Lim LA, Keles HY (2018) Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recogn Lett 112:256–262
Lim LA, Keles HY (2020) Learning multi-scale features for foreground segmentation. Pattern Anal Appl 23(3):1369–1380
Liu R, Ruichek Y, El Bagdouri M (2021) Multispectral background subtraction with deep learning. J Vis Commun Image Represent 80:103267
Zeng D, Zhu M (2018) Background subtraction using multiscale fully convolutional network. IEEE Access 6:16010–16021
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
Zhao C, Basu A (2019) Dynamic deep pixel distribution learning for background subtraction. IEEE Trans Circuits Syst Video Technol
Tezcan O, Ishwar P, Konrad J (2020) Bsuv-net: a fully-convolutional neural network for background subtraction of unseen videos. In: The IEEE winter conference on applications of computer vision, pp 2774–2783
Sultana M, Mahmood A, Javed S, Jung SK (2019) Unsupervised deep context prediction for background estimation and foreground segmentation. Mach Vis Appl 30(3):375–395
Sultana M, Mahmood A, Javed S, Jung SK (2018) Unsupervised rgbd video object segmentation using gans. arXiv preprint arXiv:1811.01526
Yu W, Bai J, Jiao L (2020) Background subtraction based on gan and domain adaptation for vhr optical remote sensing videos. IEEE Access 8:119144–119157
St-Charles P-L, Bilodeau G-A, Bergevin R (2014) Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24(1):359–373
Patil PW, Dudhane A, Murala S (2021) Multi-frame recurrent adversarial network for moving object segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 2302–2311
Patil PW, Dudhane A, Murala S, Gonde AB (2021) Deep adversarial network for scene independent moving object segmentation. IEEE Signal Process Lett 28:489–493
Bakkay MC, Rashwan HA, Salmane H, Khoudour L, Puigtt D, Ruichek Y (2018) Bscgan: deep background subtraction with conditional generative adversarial networks. In: 2018 25th IEEE international conference on image processing (ICIP). IEEE, pp 4018–4022
Dou J, Qin Q, Tu Z (2019) Background subtraction based on deep convolutional neural networks features. Multim Tools Appl 78(11):14549–14571
Gracewell J, John M (2020) Dynamic background modeling using deep learning autoencoder network. Multim Tools Appl 79(7):4639–4659
Ronneberger O, Fischer P, Brox T (2015) “U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
Afifi M (2019) 11k hands: gender recognition and biometric identification using a large dataset of hand images. Multim Tools Appl 78(15):20835–20854
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Moyà-Alcover G, Elgammal A, Jaume-i Capó A, Varona J (2017) Modeling depth for nonparametric foreground segmentation using rgbd devices. Pattern Recogn Lett 96:76–85
Giraldo JH, Bouwmans T (2020) Semi-supervised background subtraction of unseen videos: minimization of the total variation of graph signals. In: 2020 IEEE international conference on image processing (ICIP). IEEE, pp 3224–3228
Dorudian N, Lauria S, Swift S (2019) Moving object detection using adaptive blind update and rgb-d camera. IEEE Sens J 19(18):8191–8201