RGBD deep multi-scale network for background subtraction

International Journal of Multimedia Information Retrieval - Tập 11 Số 3 - Trang 395-407 - 2022
Ihssane Houhou1,2, Athmane Zitouni3, Yassine Ruichek4, Salah Eddine Bekhouche4, Mohamed Kas4, Abdelmalik Taleb-Ahmed5
1Bourgogne Franche-Comté University, UTBM
2University of Biskra
3LESIA, University of Biskra, Biskra, Algeria
4CIAD UMR 7533, Bourgogne Franche-Comté University, UTBM, Belfort, France
5IEMN DOAE, Polytechnic University of Hauts-de-France, Valenciennes, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Camplani M, Maddalena L, Alcover GM, Petrosino A, Salgado L (2017) A benchmarking framework for background subtraction in rgbd videos. In: International conference on image analysis and processing. Springer, pp 219–229

Mandal M, Vipparthi SK (2020) Scene independency matters: an empirical study of scene dependent and scene independent evaluation for cnn-based change detection. IEEE Trans Intell Transp Syst

Tezcan MO, Ishwar P, Konrad J (2021) Bsuv-net 2.0: Spatio-temporal data augmentations for video-agnostic supervised background subtraction. IEEE Access 9:53849–53860

Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149) 2:246–252 (IEEE)

KaewTraKulPong P, Bowden R (2002) An improved adaptive background mixture model for real-time tracking with shadow detection. In: Video-based surveillance systems. Springer, pp 135–144

Zivkovic Z et al (2004) Improved adaptive gaussian mixture model for background subtraction. ICPR 2:28–31

Lee D-S (2005) Effective gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 1(5):827–832

Zivkovic Z, Van Der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: European conference on computer vision. Springer, pp 751–767

Kim K, Chalidabhongse TH, Harwood D, Davis L (2004) Background modeling and subtraction by codebook construction. In: 2004 international conference on image processing, 2004. ICIP’04 5:3061–3064 (IEEE)

Murgia J, Meurie C, Ruichek Y (2014) An improved colorimetric invariants and rgb-depth-based codebook model for background subtraction using kinect. In: Mexican international conference on artificial intelligence. Springer, pp 380–392

St-Charles P-L, Bilodeau G-A, Bergevin R (2015) A self-adjusting approach to change detection based on background word consensus. In: 2015 IEEE winter conference on applications of computer vision. IEEE, pp 990–997

Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662

Noh S, Jeon M (2012) A new framework for background subtraction using multiple cues. In: Asian conference on computer vision. Springer, pp 493–506

Bilodeau G-A, Jodoin J-P, Saunier N (2013) Change detection in feature space using local binary similarity patterns. In: 2013 international conference on computer and robot vision. IEEE, pp 106–112

St-Charles P-L, Bilodeau G-A, Bergevin R (2014) Flexible background subtraction with self-balanced local sensitivity. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 408–413

Han B, Davis LS (2011) Density-based multifeature background subtraction with support vector machine. IEEE Trans Pattern Anal Mach Intell 34(5):1017–1023

Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177

Maddalena L, Petrosino A (2010) A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Comput Appl 19(2):179–186

Maddalena L, Petrosino A (2017) Exploiting color and depth for background subtraction. In: International conference on image analysis and processing. Springer, pp 254–265

Mahadevan V, Vasconcelos N (2009) Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal Mach Intell 32(1):171–177

Wang Y, Jodoin P-M, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) Cdnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 387–394

Maddalena L, Petrosino A (2015) Towards benchmarking scene background initialization. In: International conference on image analysis and processing. Springer, pp 469–476

Braham M, Van Droogenbroeck M (2016) Deep background subtraction with scene-specific convolutional neural networks. In: 2016 international conference on systems, signals and image processing (IWSSIP). IEEE, pp 1–4

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

Bouwmans T, Javed S, Sultana M, Jung SK (2019) Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. Neural Netw 117:8–66

Lim LA, Keles HY (2018) Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recogn Lett 112:256–262

Lim LA, Keles HY (2020) Learning multi-scale features for foreground segmentation. Pattern Anal Appl 23(3):1369–1380

Liu R, Ruichek Y, El Bagdouri M (2021) Multispectral background subtraction with deep learning. J Vis Commun Image Represent 80:103267

Zeng D, Zhu M (2018) Background subtraction using multiscale fully convolutional network. IEEE Access 6:16010–16021

Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

Zhao C, Basu A (2019) Dynamic deep pixel distribution learning for background subtraction. IEEE Trans Circuits Syst Video Technol

Tezcan O, Ishwar P, Konrad J (2020) Bsuv-net: a fully-convolutional neural network for background subtraction of unseen videos. In: The IEEE winter conference on applications of computer vision, pp 2774–2783

Sultana M, Mahmood A, Javed S, Jung SK (2019) Unsupervised deep context prediction for background estimation and foreground segmentation. Mach Vis Appl 30(3):375–395

Sultana M, Mahmood A, Javed S, Jung SK (2018) Unsupervised rgbd video object segmentation using gans. arXiv preprint arXiv:1811.01526

Yu W, Bai J, Jiao L (2020) Background subtraction based on gan and domain adaptation for vhr optical remote sensing videos. IEEE Access 8:119144–119157

St-Charles P-L, Bilodeau G-A, Bergevin R (2014) Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24(1):359–373

Patil PW, Dudhane A, Murala S (2021) Multi-frame recurrent adversarial network for moving object segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 2302–2311

Patil PW, Dudhane A, Murala S, Gonde AB (2021) Deep adversarial network for scene independent moving object segmentation. IEEE Signal Process Lett 28:489–493

Bakkay MC, Rashwan HA, Salmane H, Khoudour L, Puigtt D, Ruichek Y (2018) Bscgan: deep background subtraction with conditional generative adversarial networks. In: 2018 25th IEEE international conference on image processing (ICIP). IEEE, pp 4018–4022

Dou J, Qin Q, Tu Z (2019) Background subtraction based on deep convolutional neural networks features. Multim Tools Appl 78(11):14549–14571

Gracewell J, John M (2020) Dynamic background modeling using deep learning autoencoder network. Multim Tools Appl 79(7):4639–4659

Ronneberger O, Fischer P, Brox T (2015) “U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

Afifi M (2019) 11k hands: gender recognition and biometric identification using a large dataset of hand images. Multim Tools Appl 78(15):20835–20854

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

Moyà-Alcover G, Elgammal A, Jaume-i Capó A, Varona J (2017) Modeling depth for nonparametric foreground segmentation using rgbd devices. Pattern Recogn Lett 96:76–85

Giraldo JH, Bouwmans T (2020) Semi-supervised background subtraction of unseen videos: minimization of the total variation of graph signals. In: 2020 IEEE international conference on image processing (ICIP). IEEE, pp 3224–3228

Dorudian N, Lauria S, Swift S (2019) Moving object detection using adaptive blind update and rgb-d camera. IEEE Sens J 19(18):8191–8201

Minematsu T, Shimada A, Uchiyama H, Taniguchi R-I (2017) Simple combination of appearance and depth for foreground segmentation. In: International conference on image analysis and processing. Springer, pp 266–277