RF power harvesting: a review on designing methodologies and applications

Le-Giang Tran1, Hyouk-Kyu Cha2, Woo-Tae Park3
1Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, South Korea
2Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul, South Korea
3Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Brown WC (1996) The history of wireless power transmission. Solar Energy 56:3–21

Brown WC (1969) Experiments involving a microwave beam to power and position a helicopter. IEEE Trans Aerosp Electron Syst AES-5:692–702

Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M (2005) Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of the 4th international symposium on Information processing in sensor networks, p 64

Brunelli D, Benini L, Moser C, Thiele L (2008) An efficient solar energy harvester for wireless sensor nodes. In: 2008 design, automation and test in europe, pp 104–109

Abdin Z, Alim MA, Saidur R, Islam MR, Rashmi W, Mekhilef S et al (2013) Solar energy harvesting with the application of nanotechnology. Renew Sustain Energy Rev 26:837–852

Ackermann T, Söder L (2000) Wind energy technology and current status: a review. Renew Sustain Energy Rev 4:315–374

GM Joselin Herbert, S. Iniyan, E. Sreevalsan, and S. Rajapandian, “A review of wind energy technologies,” Renewable and Sustainable Energy Reviews, vol. 11, pp. 1117-1145, 8//2007

Şahin AD (2004) Progress and recent trends in wind energy. Prog Energy Combust Sci 30:501–543

Xin L, Shuang-Hua Y (2010) Thermal energy harvesting for WSNs. In: 2010 IEEE international conference on systems man and cybernetics (SMC), pp 3045–3052

Dalola S, Ferrari V, Marioli D (2010) Pyroelectric effect in PZT thick films for thermal energy harvesting in low-power sensors. Procedia Eng 5:685–688

Cuadras A, Gasulla M, Ferrari V (2010) Thermal energy harvesting through pyroelectricity. Sens Actuators A Phys 158:132–139

Cao X, Chiang WJ, King YC, Lee YK (2007) Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. IEEE Trans Power Electron 22:679–685

Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, Donnell TO, Saha CR et al (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17:1257

Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19:035001

Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175

Challa VR, Prasad M, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17:015035

Khaligh A, Zeng P, Zheng C (2010) Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans Ind Electron 57:850–860

Vullers RJM, van Schaijk R, Doms I, Van Hoof C, Mertens R (2009) Micropower energy harvesting. Solid-State Electron 53:684–693

Akhtar F, Rehmani MH (2015) Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew Sustain Energy Rev 45:769–784

Yaghjian A (1986) An overview of near-field antenna measurements. IEEE Trans Antennas Propag 34:30–45

Chen G, Ghaed H, Haque RU, Wieckowski M, Kim Y, Kim G et al (2011) A cubic-millimeter energy-autonomous wireless intraocular pressure monitor. In: 2011 IEEE international solid-state circuits conference, 2011, pp 310–312

Harlow JH (2004) Electric power transformer engineering. CRC Press, Boca Raton

Lee TH (2004) The design of cmos radio-frequency integrated circuits. Commun Eng 2:47

Song C, Huang Y, Zhou J, Zhang J, Yuan S, Carter P (2015) A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans Antennas Propag 63:3486–3495

Momenroodaki P, Fernandes RD, Popovi Z (2016) Air-substrate compact high gain rectennas for low RF power harvesting. In: 2016 10th European conference on antennas and propagation (EuCAP), pp 1–4

Lu P, Yang XS, Li JL, Wang BZ (2016) Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission. IEEE Trans Antennas Propag 64:1136–1141

Sun H (2016) An enhanced rectenna using differentially-fed rectifier for wireless power transmission. IEEE Antennas Wirel Propag Lett 15:32–35

Sun H, Geyi W (2016) A new rectenna with all-polarization-receiving capability for wireless power transmission. IEEE Antennas Wirel Propag Lett 15:814–817

Zhu P, Ma Z, Vandenbosch GAE, Gielen G (2015) 160 GHz harmonic-rejecting antenna with CMOS rectifier for millimeter-wave wireless power transmission. In: 2015 9th European conference on antennas and propagation (EuCAP), pp 1–5

Zhang J, Wu ZP, Liu CG, Zhang BH, Zhang B (2015) A double-sided rectenna design for RF energy harvesting. In: 2015 IEEE international wireless symposium (IWS), pp 1–4

Hosain MK, Kouzani AZ, Samad MF, Tye SJ (2015) A miniature energy harvesting rectenna for operating a head-mountable deep brain stimulation device. IEEE Access 3:223–234

Lu P, Yang XS, Li JL, Wang BZ (2015) A compact frequency reconfigurable rectenna for 5.2- and 5.8-GHz wireless power transmission. IEEE Trans Power Electron 30:6006–6010

Matsunaga T, Nishiyama E, Toyoda I (2015) 5.8-GHz stacked differential rectenna suitable for large-scale rectenna arrays with DC connection. IEEE Trans Antennas Propag 63:5944–5949

Chou JH, Lin DB, Weng KL, Li HJ (2014) All polarization receiving rectenna with harmonic rejection property for wireless power transmission. IEEE Trans Antennas Propag 62:5242–5249

Sun H, Guo Y, He M, Zhong Z (2013) A dual-band rectenna using broadband yagi antenna array for ambient RF power harvesting. IEEE Antennas Wirel Propag Lett 12:918–921

Niotaki K, Kim S, Jeong S, Collado A, Georgiadis A, Tentzeris MM (2013) A compact dual-band rectenna using slot-loaded dual band folded dipole antenna. IEEE Antennas Wirel Propag Lett 12:1634–1637

Hucheng S, Yong-Xin G, Miao H, Zheng Z (2012) Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett 11:929–932

Olgun U, Chen CC, Volakis JL (2010) Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs. In: 2010 URSI international symposium on electromagnetic theory (EMTS), pp 329–331

Ren YJ, Farooqui MF, Chang K (2007) A compact dual-frequency rectifying antenna with high-orders harmonic-rejection. IEEE Trans Antennas Propag 55:2110–2113

Olgun U, Chen CC, Volakis JL (2011) Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wirel Propag Lett 10:262–265

Shen S, Murch RD (2016) Impedance matching for compact multiple antenna systems in random RF fields. IEEE Trans Antennas Propag 64:820–825

Etor D, Dodd LE, Wood D, Balocco C (2015) Impedance matching at THz frequencies: optimizing power transfer in rectennas. In: 2015 40th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz), pp 1–2

Hoarau C, Corrao N, Arnould JD, Ferrari P, Xavier P (2008) Complete design and measurement methodology for a tunable RF impedance-matching network. IEEE Trans Microw Theory Tech 56:2620–2627

Marrocco G (2008) The art of UHF RFID antenna design: impedance-matching and size-reduction techniques. IEEE Antennas Propag Mag 50:66–79

Mingo JD, Valdovinos A, Crespo A, Navarro D, Garcia P (2004) An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system. IEEE Trans Microw Theory Tech 52:489–497

Hatay M (1980) Empirical formula for propagation loss in land mobile radio services. IEEE Trans Veh Technol 29:317–325

Radiom S, Vandenbosch G, Gielen G (2008) Impact of antenna type and scaling on scavenged voltage in passive RFID tags. In: International workshop on antenna technology: small antennas and novel metamaterials, 2008. iWAT 2008, pp 442–445

Gosset G, Flandre D (2011) Fully-automated and portable design methodology for optimal sizing of energy-efficient CMOS voltage rectifiers. IEEE J Emerg Sel Top Circuits Syst 1:141–149

Facen A, Boni A (2007) CMOS power retriever for UHF RFID tags. Electron Lett 43:1424

Kotani K, Sasaki A, Ito T (2009) High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE J Solid-State Circuits 44:3011–3018

Chouhan SS, Nurmi M, Halonen K (2016) Efficiency enhanced voltage multiplier circuit for RF energy harvesting. Microelectron J 48:95–102

Wang W, Xiangjie C, Wong H (2015) Analysis and design of CMOS full-wave rectifying charge pump for RF energy harvesting applications. In: 2015 IEEE Region 10 conference TENCON 2015, pp 1–4

Rodriguez AN, Cruz FRG, Ramos RZ (2015) Design of 900 Mhz AC to DC converter using native Cmos device of TSMC 0.18 micron technology for RF energy harvest application. Univers J Electr Electron Eng 3:7

Hwang YS, Lei CC, Yang YW, Chen JJ, Yu CC (2014) A 13.56-MHz low-voltage and low-control-loss RF-DC rectifier utilizing a reducing reverse loss technique. IEEE Trans Power Electron 29:6544–6554

Haddad PA, Gosset G, Raskin JP, Flandre D (2014) Efficient ultra low power rectification at 13.56 MHz for a 10 µA load current. In: 2014 SOI-3D-subthreshold microelectronics technology unified conference (S3S), pp 1–2

Hameed Z, Moez K (2014) Hybird forward and backward threshold-compensated RF-DC power converter for RF energy harvesting. IEEE J Eng Sel Top Circuits Syst 4:9

Karolak D, Taris T, Deval Y, Béguéret JB et al (2012) Design comparison of low-power rectifiers dedicated to RF energy harvesting. In: 2012 19th IEEE international conference on electronics, circuits and systems (ICECS), pp 524–527

Kadupitiya JCS, Abeythunga TN, Ranathunga PDMT, De Silva DS (2015) Optimizing RF energy harvester design for low power applications by integrating multi stage voltage doubler on patch antenna. In: 2015 8th international conference on Ubi-Media computing (UMEDIA), pp 335–338

Hemour S, Zhao Y, Lorenz CHP, Houssameddine D, Gui Y, Hu CM et al (2014) Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans Microw Theory Tech 62:965–976

Lorenz CHP, Hemour S, Wu K (2016) Physical mechanism and theoretical foundation of ambient RF power harvesting using zero-bias diodes. IEEE Trans Microw Theory Tech 64:2146–2158

Sun H, Xu G (2015) A differentially-driven rectifier for enhanced RF power harvesting. In: 2015 IEEE MTT-S international microwave workshop series on advanced materials and processes for RF and THz applications (IMWS-AMP), pp 1–3

Papotto G, Carrara F, Palmisano G (2011) A 90-nm CMOS threshold-compensated RF energy harvester. IEEE J Solid-State Circuits 46:1985–1997

Lingley AR, Ali M, Liao Y, Mirjalili R, Klonner M, Sopanen M et al (2011) A single-pixel wireless contact lens display. J Micromech Microeng 21:125014

Zhang Y, Zhang F, Shakhsheer Y, Silver JD, Klinefelter A, Nagaraju M et al (2013) A batteryless 19 W MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J Solid-State Circuits 48:199–213

Helleputte NV, Konijnenburg M, Pettine J, Jee DW, Kim H, Morgado A et al (2015) A 345 uW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J Solid-State Circuits 50:230–244

Kim H, Kim S, Helleputte NV, Artes A, Konijnenburg M, Huisken J et al (2014) A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans Biomed Circuits Syst 8:257–267

Yan L, Bae J, Lee S, Roh T, Song K, Yoo HJ (2011) A 3.9 mW 25-electrode reconfigured sensor for wearable cardiac monitoring system. IEEE J Solid-State Circuits 46:353–364

Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan AP (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid-State Circuits 45(4):804–816

Chen G, Fojtik M, Kim D, Fick D, Park J, Seok M et al. (2010) Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells. In: 2010 IEEE international solid-state circuits conference—(ISSCC), pp 288–289

Rai S, Holleman J, Pandey JN, Zhang F, Otis B (2009) A 500 µW neural tag with 2 µVrms AFE and frequency-multiplying MICS/ISM FSK transmitter. In: 2009 IEEE international solid-state circuits conference—digest of technical papers, pp 212–213

Nishimoto H, Kawahara Y, Asami T (2010) Prototype implementation of ambient RF energy harvesting wireless sensor networks. In: Sensors, 2010 IEEE, pp 1282–1287

Shinohara N, Kawasaki S (2009) Recent wireless power transmission technologies in Japan for space solar power station/satellite. In: 2009 IEEE radio and wireless symposium, pp 13–15

Kim T-I, McCall JG, Jung YH, Huang X, Siuda ER, Li Y et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211–216

Cheng HW, Yu TC, Huang HY, Ting SH, Huang TH, Chiou JC et al (2014) Design of miniaturized antenna and power harvester circuit on the enucleated porcine eyes. IEEE Antennas Wirel Propag Lett 13:1156–1159

Chow EY, Yang CL, Ouyang Y, Chlebowski AL, Irazoqui PP, Chappell WJ (2011) Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans Antennas Propag 59:2379–2387

Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52:2292–2330

Correia R, Carvalho NB, Kawasaki S (2016) Continuously power delivering for passive backscatter wireless sensor networks. IEEE Trans Microw Theory Tech 64:3723–3731

Praveen MP, Mehta NB (2016) Trade-offs in analog sensing and communication in RF energy harvesting wireless sensor networks. In: 2016 IEEE international conference on communications (ICC), pp 1–6

Collado A, Georgiadis A (2014) Optimal waveforms for efficient wireless power transmission. IEEE Microwave Wirel Compon Lett 24:354–356

Zhao Y, Chen B, Zhang R (2013) Optimal power allocation for an energy harvesting estimation system. In: 2013 IEEE international conference on acoustics, speech and signal processing, pp 4549–4553

Ruisi G, Hong P, Zhibin L, Na G, Jinhui W, Xiaowei C (2016) RF-powered battery-less wireless sensor network in structural monitoring. In: 2016 IEEE international conference on electro information technology (EIT), pp 0547–0552

Seah WKG, Eu ZA, Tan HP (2009) Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)—survey and challenges. In: 2009 1st international conference on wireless communication, vehicular technology, information theory and aerospace and electronic systems technology, pp 1–5

Jabbar H, Song YS, Jeong TT (2010) RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans Consum Electron 56:247–253

Che W, Chen W, Meng D, Wang X, Tan X, Yan N et al (2010) Power management unit for battery assisted passive RFID tag. Electron Lett 46:589–590

Lee JH, Jung WJ, Jung JW, Jang JE, Park JS (2015) A matched RF charger for wireless RF power harvesting system. Microw Opt Technol Lett 57:1622–1625

Gudan K, Chemishkian S, Hull JJ, Thomas SJ, Ensworth J, Reynolds MS (2014) A 2.4 GHz ambient RF energy harvesting system with −20 dBm minimum input power and NiMH battery storage. In: RFID technology and applications conference (RFID-TA), 2014 IEEE, pp 7–12

Nagaraju MB, Lingley AR, Sridharan S, Gu J, Ruby R, Otis BP (2015) A 0.8 mm3 ± 0.68 psi single-chip wireless pressure sensor for TPMS applications. In: 2015 IEEE international solid-state circuits conference—(ISSCC) digest of technical papers, pp 1–3

Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J et al (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132

Souri K, Chae Y, Makinwa KAA (2013) A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15 °C (3σ) from −55 °C to 125 °C. IEEE J Solid-State Circuits 48:292–301

Aita AL, Pertijs MAP, Makinwa KAA, Huijsing JH, Meijer GCM (2013) Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (±3σ) from −70 °C to 130 °C. IEEE Sens J 13:1840–1848

Jeong S, Foo Z, Lee Y, Sim JY, Blaauw D, Sylvester D (2014) A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE J Solid-State Circuits 49:1682–1693

Moon SE, Lee HK, Choi NJ, Kang HT, Lee J, Ahn SD et al (2015) Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique. Sens Actuators B Chem 217:146–150

Zhou Q, Sussman A, Chang J, Dong J, Zettl A, Mickelson W (2015) Fast response integrated MEMS microheaters for ultra low power gas detection. Sens Actuators A Phys 223:67–75

Erol-Kantarci M, Mouftah HT (2012) Mission-aware placement of RF-based power transmitters in wireless sensor networks. In: 2012 IEEE symposium on computers and communications (ISCC), pp 000012–000017

He S, Chen J, Jiang F, Yau DKY, Xing G, Sun Y (2013) Energy provisioning in wireless rechargeable sensor networks. IEEE Trans Mob Comput 12:1931–1942

Li Y, Fu L, Chen M, Chi K, Zhu YH (2015) RF-based charger placement for duty cycle guarantee in battery-free sensor networks. IEEE Commun Lett 19:1802–1805

Shao S, Gudan K, Hull JJ (2016) A mechanically beam-steered phased array antenna for power-harvesting applications [Antenna Applications Corner]. IEEE Antennas Propag Mag 58:58–64

Gudan K, Shao S, Hull JJ, Ensworth J, Reynolds MS (2015) Ultra-low power 2.4 GHz RF energy harvesting and storage system with −25 dBm sensitivity. In: 2015 IEEE international conference on RFID (RFID), pp 40–46