RF discharge in CO2 laser mixtures at moderate pressures

Plasma Physics Reports - Tập 28 - Trang 63-70 - 2002
S. A. Starostin1, K. J. Boller1, P. J. M. Peters1, Yu. B. Udalov2, I. V. Kochetov3, A. P. Napartovich3
1University of Twente, The Netherlands
2Nederlands Center for Laser Research, The Netherlands
3Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow oblast, Russia

Tóm tắt

The voltage-power characteristics and spatial structure of an RF discharge in the mixtures of CO2 and N2 molecular gases with He at total pressures of tens of torr are studied. One-dimensional numerical simulations of an RF discharge are carried out within two approaches: (i) the distribution function and the related kinetic coefficients are assumed to be functions of the local reduced field, and (ii) the kinetic coefficients are functions of the electron mean energy, which is calculated with allowance for both electron heat conduction and diffusion. The latter approach is shown to better describe the existing experimental dependence of the discharge voltage and the phase shift between the discharge current and voltage on the driving power.

Tài liệu tham khảo

A. D. Colley, F. Villarreal, A. A. Cameron, et al., in Gas Laser: Recent Developments and Future Prospects, Ed. by W. J. Witteman and V. N. Ochkin, NATO ASI Ser., Ser. 3 10, 89 (1995). Yu. B. Udalov, S. N. Tskhai, P. J. M. Peters, et al., in Gas Laser: Recent Developments and Future Prospects, Ed. by W. J. Witteman and V. N. Ochkin, NATO ASI Ser., Ser. 3 10, 73 (1995). Jianguo Xin, Wang Zhang, and Wentao Jiao, Appl. Phys. Lett. 75, 1369 (1999). N. I. Lipatov, P. P. Pashinin, A. M. Prokhorov, and V. Yu. Yurov, Tr. Inst. Obshch. Fiz. Akad. Nauk SSSR 17, 115 (1989). R. Wester and S. Seiwert, J. Phys. D 24, 1371 (1991). P. P. Vitruk, H. J. Baker, and D. R. Hall, J. Phys. D 25, 1767 (1992). H. J. Baker, Meas. Sci. Technol. 7, 1631 (1996). V. V. Kun, V. G. Leont’ev, M. Z. Novgorodov, et al., in Proceedings of the XXII International Conference on Phenomena in Ionized Gases, Hoboken, 1995, Vol. 3, p. 67. J. P. Boeuf and Ph. Belenguer, in Nonequilibrium Processes in Partially Ionized Gases, Ed. by M. Capitelli and J. N. Bardsley (Plenum, New York, 1990), p. 155. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, High-Frequency Capacitive Discharge, (Nauka, Moscow, 1995; CRC, London, 1995). B. I. Ilukhin, Yu. B. Udalov, I. V. Kochetov, et al., Appl. Phys. B: Lasers Opt. B62, 113 (1996). V. N. Ochkin, W. J. Witteman, B. I. Ilukhin, et al., Appl. Phys. B: Lasers Opt. B63, 575 (1996). S. A. Starostin, Yu. B. Udalov, P. J. M. Peters, and W. J. Witteman, Appl. Phys. Lett. 77, 21 (2000). M. S. Syed Wahid and C. V. Madhusudana, Int. J. Heat Mass Transf. 43, 4483 (2000). Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoizdat, Moscow, 1991; CRC, Boca Raton, 1997). V. A. Feoktistov, A. M. Popov, O. B. Popovicheva, et al., IEEE Trans. Plasma Sci. 19, 163 (1991). S. A. Starostin, P. J. M. Peters, G. Van der Poel, et al., Fiz. Plazmy 27, 458 (2001) [Plasma Phys. Rep. 27, 432 (2001)]. D. L. Sharfetter and H. K. Gummel, IEEE Trans. Electron Devices ED-16, 64 (1969). J.-B. Boeuf, Phys. Rev. A 36, 2782 (1987). N. N. Elkin and A. P. Napartovich, Applied Laser Optics (TsNIIatominform, Moscow, 1989).