RF-aerogels catalysed by ammonium carbonate

Journal of Sol-Gel Science and Technology - Tập 53 - Trang 85-92 - 2009
Michael Reuß1, Lorenz Ratke1
1Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln, Germany

Tóm tắt

The application of ammonium carbonate (AC) as catalyst for the preparation of RF-aerogels leads to organic aerogels without metallic impurities in contrast to conventional catalysts like sodium carbonate. To synthesize the AC catalyzed RF aerogels we varied the catalyst and formaldehyde concentration in wide ranges. The nanostructure varies accordingly over an order of magnitude. The particle sizes in the dry aerogel network, determined by scanning electron microscopy, are in the range of 0.15–4 μm. The aerogel densities are in the range of 370–420 kg m−3. The specific surface measured by nitrogen adsorption (BET) varies from 0.5 to 13 m2 g−1 which equals a specific surface area from 0.7 to 20 μm−1. Thermogravimetry is employed to study the drying process, annealing reactions and decomposition of the aerogel into a carbon aerogel.

Tài liệu tham khảo

Brück S, Ratke L (2003) J Sol-Gel Sci Technol 26(1):663 Voss D, Ratke L (2005) Giesserei Forschung 57(1):18 Ratke L, Brück S (2006) J Mater Sci 41:1019 Ratke L, Fricke J (2003) US Patent 6599953 Pekala RW, Alviso CT, Nielson JK, Tran TD (1995) Mat Research Society Symposium Proceedings 393:413 Bonsal RC, Donnet JB, Stoeckli HF (1988) Active carbon. Marcel Dekker, New York Mayer ST, Pekala RW, Kaschmitter JL (1993) J Electrochem Soc 140:446 Pröbstle H, Schmitt J, Fricke J (2002) J Power Sour 105:189 Hammerschmidt A, Domke W, Nölscher C, Suchy P (1999) Europäisches Patent 19960907527 Pekala RW, Kong FM (1989) Revue de Physique Appliquée, Colloque C4, Suppl. au n°4, Tome 24 Mayer ST, Kaschmitter JL, Pekala RW (1995) US Patent, 5420168 Fischer U, Saliger R, Bock V, Petrivic R, Fricke J (1997) J Porous Mater 4:281 Brück S, Reuß M, Richter HE, Klein H, Haubner P, Ratke L (2004) International symposium on physical sciences in space, Toronto, pp 23–27 Thiel J, Klein H, Brück S, Ratke L (2003) GIT Labor Fachzeitschrift 47:162 Fricke J (1988) J Non-Cryst Solids 100:169 Wiener D, Reichenauer G, Scherb T, Fricke J (2004) J Non-Cryst Solids 350:126 Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon 43:2481 Job N, Panariello F, Marien J, Crine M, Pirard J-P, Léonard A (2006) J Non-Cryst Solids 352:24 Czakkel O, Marthi K, Geissler E, Lázló K (2005) Microporous Mesoporous Mater 86:124 Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Carbon 37:2049 Kocklenberg R, Mathieu B, Blacher S, Pirard R, Pirard JO, Sorby R, Van den Bossche G (1998) J Non-Cryst Solids 225:8 Horikawa T, Hayashi J, Muroyama K (2004) Carbon 42:169 Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2006) Carbon 44:2301 Li W-C, Lu A-H, Schüth F (2005) Chem Mater 17:3620 Brandt R (2004) Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele, Dissertation (PHD), Universität Würzburg Brandt R, Petricevic R, Pröbstle H, Fricke J (2003) J Porous Mater 10:171 Brandt R, Fricke J (2004) J Non-Cryst Solids 350:131 Reuß M, Ratke L (2008) J Sol-Gel Sci Technol 47:74 Durairaj J (2005) Resorcinol: chemistry, technology and applications. Springer, Berlin Ratke L, Voorhees PW (2002) Growth and coarsening. Springer, Berlin Reichenauer G, Scherer GW (2001) Colloids and Surf A187–188:41–50 Underwood E (1970) Quantitative stereology. Addison-Wesley, Reading Schaefer DW, Pekala R, Beaucage G (1995) J Non-Cryst Solids 186:159 Sanchez R (2004) Ann Nucl Energy 31:2211–2216 Gille W, Enke D, Janowski F (2002) J Porous Mater 9:221–230 Gommes CJ, Roberts AP (2008) Phys Rev E 77:041409 Haard TM, Gervais G, Nomura R, Halperin WP (2000) Physica B 284:289–290 Smith DM, Scherer GW, Anderson JW (1995) J Non-Cryst Solids 188:191–206 Gibson LL, Ashby MF (1988) Cellular solids. Pergamon Press, Oxford