RETRACTED: Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes
Tài liệu tham khảo
Ross, 1999, Atherosclerosis — an inflammatory disease, N. Engl. J. Med., 340, 115, 10.1056/NEJM199901143400207
Hansson, 2005, Inflammation, atherosclerosis, and coronary artery disease, N. Engl. J. Med., 352, 1685, 10.1056/NEJMra043430
Libby, 2009, Leducq Transatlantic Network on Atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice, J. Am. Coll. Cardiol., 54, 2129, 10.1016/j.jacc.2009.09.009
Stary, 1994, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association, Circulation, 89, 2462, 10.1161/01.CIR.89.5.2462
Stary, 1995, A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association, Circulation, 92, 1355, 10.1161/01.CIR.92.5.1355
Gerrity, 1981, The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions, Am. J. Pathol., 103, 181
Babaev, 1993, Monocyte/macrophage accumulation and smooth muscle cell phenotypes in early atherosclerotic lesions of human aorta, Atherosclerosis, 100, 237, 10.1016/0021-9150(93)90210-L
Ley, 2011, Monocyte and macrophage dynamics during atherogenesis, Arterioscler. Thromb. Vasc. Biol., 31, 1506, 10.1161/ATVBAHA.110.221127
Orekhov, 2014, Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease, Int. J. Mol. Sci., 15, 12807, 10.3390/ijms150712807
Bobryshev, 2013, Changes of lysosomes in the earliest stages of the development of atherosclerosis, J. Cell. Mol. Med., 17, 626, 10.1111/jcmm.12042
Bobryshev, 2006, Monocyte recruitment and foam cell formation in atherosclerosis, Micron, 37, 208, 10.1016/j.micron.2005.10.007
Freeman, 1994, Macrophage scavenger receptors, Curr. Opin. Lipidol., 5, 143, 10.1097/00041433-199404000-00011
Kruth, 2001, Macrophage foam cells and atherosclerosis, Front. Biosci., 6, D429, 10.2741/Kruth
Kruth, 2013, Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions, Curr. Pharm. Des., 19, 5865, 10.2174/1381612811319330005
Randolph, 2014, Mechanisms that regulate macrophage burden in atherosclerosis, Circ. Res., 114, 1757, 10.1161/CIRCRESAHA.114.301174
Moore, 2011, Macrophages in the pathogenesis of atherosclerosis, Cell, 145, 341, 10.1016/j.cell.2011.04.005
Bobryshev, 2012, Widespread distribution of HLA-DR-expressing cells in macroscopically undiseased intima of the human aorta: a possible role in surveillance and maintenance of vascular homeostasis, Immunobiology, 217, 558, 10.1016/j.imbio.2011.03.014
De Duve, 1966, The significance of lysosomes in pathology and medicine, Proc. Inst. Med. Chic., 26, 73
De Duve, 1970, The role of lysosomes in cellular pathology, Triangle, 9, 200
Seimon, 2009, Mechanisms and consequences of macrophage apoptosis in atherosclerosis, J. Lipid Res., 50, S382, 10.1194/jlr.R800032-JLR200
Melián, 1999, CD1 expression in human atherosclerosis, Am. J. Pathol., 155, 775, 10.1016/S0002-9440(10)65176-0
Bobryshev, 2000, CD1 Expression and the nature of CD1-expressing cells in human atherosclerotic plaques, Am. J. Pathol., 156, 1477, 10.1016/S0002-9440(10)65016-X
Shen, 2008, Oxidized low-density lipoprotein induces differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells, Atherosclerosis, 199, 257, 10.1016/j.atherosclerosis.2007.12.002
Porcheray, 2005, Macrophage activation switching: an asset for the resolution of inflammation, Clin. Exp. Immunol., 142, 481, 10.1111/j.1365-2249.2005.02934.x
Leitinger, 2013, Phenotypic polarization of macrophages in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 33, 1120, 10.1161/ATVBAHA.112.300173
Nicola, 1986, Specificity of action of colony-stimulating factors in the differentiation of granulocytes and macrophages, Ciba Found. Symp., 118, 7
Zhang, 2010, Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines, PLoS Negl. Trop. Dis., 4, e648, 10.1371/journal.pntd.0000648
Lacavé-Lapalun, 2013, Flagellin or lipopolysaccharide treatment modified macrophage populations after colorectal radiation of rats, J. Pharmacol. Exp. Ther., 346, 75, 10.1124/jpet.113.204040
Mantovani, 2004, The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol., 25, 677, 10.1016/j.it.2004.09.015
Martinez, 2008, Macrophage activation and polarization, Front. Biosci., 13, 453, 10.2741/2692
Zizzo, 2012, Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction, J. Immunol., 189, 3508, 10.4049/jimmunol.1200662
Pinhal-Enfield, 2003, An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors, Am. J. Pathol., 163, 711, 10.1016/S0002-9440(10)63698-X
Ferrante, 2013, The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin- 4 receptor alpha (IL-4Ralpha) signaling, Inflammation, 36, 921, 10.1007/s10753-013-9621-3
Gleissner, 2010, CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages, J. Immunol., 184, 4810, 10.4049/jimmunol.0901368
Erbel, 2015, CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo, Innate Immun., 21, 255, 10.1177/1753425914526461
Gleissner, 2012, Macrophage phenotype modulation by CXCL4 in atherosclerosis, Front. Physiol., 3, 1, 10.3389/fphys.2012.00001
De Paoli, 2014, Macrophage phenotypes and their modulation in atherosclerosis, Circ. J., 78, 1775, 10.1253/circj.CJ-14-0621
Bouhlel, 2007, PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties, Cell Metab., 6, 137, 10.1016/j.cmet.2007.06.010
Stöger, 2012, Distribution of macrophage polarization markers in human atherosclerosis, Atherosclerosis, 225, 461, 10.1016/j.atherosclerosis.2012.09.013
Chinetti-Gbaguidi, 2011, Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways, Circ. Res., 108, 985, 10.1161/CIRCRESAHA.110.233775
Shaikh, 2012, Macrophage subtypes in symptomatic carotid artery and femoral artery plaques, Eur. J. Vasc. Endovasc. Surg., 44, 491, 10.1016/j.ejvs.2012.08.005
Huang, 2012, Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB, PLoS One, 7, e42507, 10.1371/journal.pone.0042507
Orekhov, 2015, Macrophages in immunopathology of atherosclerosis: a target for diagnostics and therapy, Curr. Pharm. Des., 21, 1172, 10.2174/1381612820666141013120459
Nikiforov, 2014, Modified atherogenic LDL induces overexpression of both pro-inflammatory cytokine TNFa and anti-inflammatory chemokine CCL18. 81st Congress of the European Atherosclerosis Society, June 2–5, 2013, Lyon, France, Atherosclerosis, 235, e84, 10.1016/j.atherosclerosis.2014.05.221
Orekhov, 2013, Expression of TNFalfa and CCL18 is increased as a result of cholesterol accumulation in macrophages, Arterioscler. Thromb. Vasc. Biol., 33
Bobryshev, 1998, Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions, Cardiovasc. Res., 37, 799, 10.1016/S0008-6363(97)00229-0
Boyle, 2009, Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype, Am. J. Pathol., 174, 1097, 10.2353/ajpath.2009.080431
Philippidis, 2004, Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery, Circ. Res., 94, 119, 10.1161/01.RES.0000109414.78907.F9
Finn, 2012, Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques, J. Am. Coll. Cardiol., 59, 166, 10.1016/j.jacc.2011.10.852
Boyle, 2011, Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage, Arterioscler. Thromb. Vasc. Biol., 31, 2685, 10.1161/ATVBAHA.111.225813
Boyle, 2012, Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection, Circ. Res., 110, 20, 10.1161/CIRCRESAHA.111.247577
Boyle, 2012, Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage, Curr. Opin. Lipidol., 23, 453, 10.1097/MOL.0b013e328356b145
Bories, 2013, Liver X receptor (LXR) activation stimulates iron export in human alternative macrophages, Circ. Res., 113, 1196, 10.1161/CIRCRESAHA.113.301656
Kadl, 2010, Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2, Circ. Res., 107, 737, 10.1161/CIRCRESAHA.109.215715
Stewart, 2010, CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer, Nat. Immunol., 11, 155, 10.1038/ni.1836
Jiang, 2012, Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation, Biochem. Biophys. Res. Commun., 425, 121, 10.1016/j.bbrc.2012.07.011
Sheedy, 2013, CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation, Nat. Immunol., 14, 812, 10.1038/ni.2639
van Tits, 2011, Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2, Atherosclerosis, 214, 345, 10.1016/j.atherosclerosis.2010.11.018
Bae, 2009, Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2, Circ. Res., 104, 210, 10.1161/CIRCRESAHA.108.181040
Wiesner, 2010, Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia, Circ. Res., 107, 56, 10.1161/CIRCRESAHA.110.218420
Walton, 2003, Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol anchored protein, J. Biol. Chem., 278, 29661, 10.1074/jbc.M300738200
Oskolkova, 2010, Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation, J. Immunol., 185, 7706, 10.4049/jimmunol.0903594
Kuhn, 2011, Antioxidant signaling via Nrf2 counteracts lipopolysaccharide-mediated inflammatory responses in foam cell macrophages, Free Radic. Biol. Med., 50, 1382, 10.1016/j.freeradbiomed.2011.02.036
Freigang, 2011, Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis, Eur. J. Immunol., 41, 2040, 10.1002/eji.201041316
Rajamäki, 2010, Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation, PLoS One, 5, e11765, 10.1371/journal.pone.0011765
Duewell, 2010, NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals, Nature, 464, 1357, 10.1038/nature08938
Harkewicz, 2008, Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein, J. Biol. Chem., 283, 10241, 10.1074/jbc.M709006200
Huang, 2010, 7-ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa B activation in J774A.1 macrophages, Life Sci., 87, 651, 10.1016/j.lfs.2010.09.028
Huber, 2002, Oxidized cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway, Arterioscler. Thromb. Vasc. Biol., 22, 581, 10.1161/01.ATV.0000012782.59850.41
Jedidi, 2006, Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPARalpha, Biochem. Biophys. Res. Commun., 351, 733, 10.1016/j.bbrc.2006.10.122
Kar, 2008, Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36, J. Biol. Chem., 283, 8765, 10.1074/jbc.M709195200
Yakubenko, 2011, αMβ2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation, Circ. Res., 108, 544, 10.1161/CIRCRESAHA.110.231803
Shibata, 2010, Macrophages, oxysterols and atherosclerosis, Circ. J., 74, 2045, 10.1253/circj.CJ-10-0860
Chen, 2009, MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages, Cardiovasc. Res., 83, 131, 10.1093/cvr/cvp121
Leonarduzzi, 2005, Oxysterol-induced up-regulation of MCP-1 expression and synthesis in macrophage cells, Free Radic. Biol. Med., 39, 1152, 10.1016/j.freeradbiomed.2005.06.024
Leonarduzzi, 2010, Molecular signaling operated by a diet-compatible mixture of oxysterols in up-regulating CD36 receptor in CD68 positive cells, Mol. Nutr. Food Res., 54, S31, 10.1002/mnfr.200900493
Adamson, 2011, Phenotypic modulation of macrophages in response to plaque lipids, Curr. Opin. Lipidol., 22, 335, 10.1097/MOL.0b013e32834a97e4
Lähdesmäki, 2009, Phospholipase A(2)-modified LDL particles retain the generated hydrolytic products and are more atherogenic at acidic pH, Atherosclerosis, 207, 352, 10.1016/j.atherosclerosis.2009.04.031
Boyanovsky, 2010, Bioactive products generated by group V sPLA(2) hydrolysis of LDL activate macrophages to secrete pro-inflammatory cytokines, Cytokine, 50, 50, 10.1016/j.cyto.2009.12.009
Obinata, 2005, Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A, J. Biol. Chem., 280, 40676, 10.1074/jbc.M507787200
Peter, 2008, Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A, J. Biol. Chem., 283, 5296, 10.1074/jbc.M706586200
Weng, 1998, A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M, Proc. Natl. Acad. Sci. U. S. A., 95, 12334, 10.1073/pnas.95.21.12334
Parks, 2006, Loss of the lysophosphatidylcholine effector, G2A, ameliorates aortic atherosclerosis in low-density lipoprotein receptor knockout mice, Arterioscler. Thromb. Vasc. Biol., 26, 2703, 10.1161/01.ATV.0000246774.02426.71
Bolick, 2009, G2A deficiency in mice promotes macrophage activation and atherosclerosis, Circ. Res., 104, 318, 10.1161/CIRCRESAHA.108.181131
Shi, 2006, TLR4 links innate immunity and fatty acid-induced insulin resistance, J. Clin. Invest., 116, 3015, 10.1172/JCI28898
Dasu, 2011, Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors, Am. J. Physiol. Endocrinol. Metab., 300, E145, 10.1152/ajpendo.00490.2010
Ishiyama, 2010, Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells, Atherosclerosis, 209, 118, 10.1016/j.atherosclerosis.2009.09.004
McClelland, 2010, Conjugated linoleic acid suppresses the migratory and inflammatory phenotype of the monocyte/macrophage cell, Atherosclerosis, 211, 96, 10.1016/j.atherosclerosis.2010.02.003
Khoo, 2010, Electrophilic nitro-fatty acids: anti-inflammatory mediators in the vascular compartment, Curr. Opin. Pharmacol., 10, 179, 10.1016/j.coph.2009.11.003
Schopfer, 2010, Covalent peroxisome proliferator activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions, J. Biol. Chem., 285, 12321, 10.1074/jbc.M109.091512
Kansanen, 2011, Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism, J. Biol. Chem., 286, 14019, 10.1074/jbc.M110.190710
Rudolph, 2010, Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol., 30, 938, 10.1161/ATVBAHA.109.201582
Bonacci, 2011, Electrophilic fatty acids regulate matrix metalloproteinase activity and expression, J. Biol. Chem., 286, 16074, 10.1074/jbc.M111.225029
Li, 2009, Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet, Circ. Res., 105, 1072, 10.1161/CIRCRESAHA.109.199570
Groeger, 2010, Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids, Nat. Chem. Biol., 6, 433, 10.1038/nchembio.367
Merched, 2008, Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators, FASEB J., 22, 3595-3606, 10.1096/fj.08-112201
Grover, 2013, Proresolution mediators and receptors: novel drug targets for enhancing pharmacological armamentarium against periodontal inflammation, Infect. Disord. Drug Targets, 13, 75, 10.2174/18715265112129990034
Rader, 2006, Molecular regulation of HDL metabolism and function: implications for novel therapies, J. Clin. Invest., 116, 3090, 10.1172/JCI30163
Feig, 2011, HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells, Proc. Natl. Acad. Sci. U. S. A., 108, 7166, 10.1073/pnas.1016086108
Sanson, 2013, HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process, PLoS One, 8, e74676, 10.1371/journal.pone.0074676
Mori, 2007, Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling, J. Nutr., 137, 1616S, 10.1093/jn/137.6.1616S
Chen, 2010, FIZZ1 potentiates the carbachol-induced tracheal smooth muscle contraction, Eur. Respir. J., 36, 1165, 10.1183/09031936.00097609
Odegaard, 2007, Macrophage-specific ppargamma controls alternative activation and improves insulin resistance, Nature, 447, 1116, 10.1038/nature05894
Odegaard, 2008, Alternative M2 activation of Kupffer cells by ppardelta ameliorates obesity-induced insulin resistance, Cell Metab., 7960, 496, 10.1016/j.cmet.2008.04.003
Kang, 2008, Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity, Cell Metab., 7, 485, 10.1016/j.cmet.2008.04.002
Spann, 2012, Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses, Cell, 151, 138, 10.1016/j.cell.2012.06.054
Tontonoz, 2003, Liver X receptor signaling pathways in cardiovascular disease, Mol. Endocrinol., 17, 985, 10.1210/me.2003-0061
Joseph, 2002, Synthetic LXR ligand inhibits the development of atherosclerosis in mice, Proc. Natl. Acad. Sci. U. S. A., 99, 7604, 10.1073/pnas.112059299
Levin, 2005, Macrophage liver x receptor is required for antiatherogenic activity of LXR agonists, Arterioscler. Thromb. Vasc. Biol., 25, 135, 10.1161/01.ATV.0000150044.84012.68
Bischoff, 2010, Nonredundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice, J. Lipid Res., 51, 900, 10.1194/jlr.M900096
Ma, 2012, ABCA1 protein enhances Toll-like receptor 4 (TLR4)-stimulated interleukin-10 (IL-10) secretion through protein kinase a (PKA) activation, J. Biol. Chem., 287, 40502, 10.1074/jbc.M112.413245
Pourcet, 2011, LXRalpha regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8, Circ. Res., 109, 492, 10.1161/CIRCRESAHA.111.241810
Ghisletti, 2007, Parallel sumoylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma, Mol. Cell, 25, 57, 10.1016/j.molcel.2006.11.022
Joseph, 2004, LXR-dependent gene expression is important for macrophage survival and the innate immune response, Cell, 119, 299, 10.1016/j.cell.2004.09.032
Li, 2002, Induction of human liver X receptor alpha gene expression via an autoregulatory loop mechanism, Mol. Endocrinol., 16, 506
Ribas, 2011, Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development, Proc. Natl. Acad. Sci. U. S. A., 108, 16457, 10.1073/pnas.1104533108
Sonoda, 2007, Nuclear receptor ERRalpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense, Genes Dev., 21, 1909, 10.1101/gad.1553007
Feinberg, 2005, Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages, J. Biol. Chem., 280, 38247, 10.1074/jbc.M509378200
Yang, 2010, Induction of Krüppel-like factor 4 by high-density lipoproteins promotes the expression of scavenger receptor class B type I, FEBS J., 277, 3780, 10.1111/j.1742-4658.2010.07779.x
Lovren, 2012, MicroRNA-145 targeted therapy reduces atherosclerosis, Circulation, 126, S81, 10.1161/CIRCULATIONAHA.111.084186
Date, 2014, Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization, J. Biol. Chem., 289, 10318, 10.1074/jbc.M113.526749
Urtasun, 2012, Oxidative stress modulates KLF6Full and its splice variants, Alcohol. Clin. Exp. Res., 36, 1851, 10.1111/j.1530-0277.2012.01798.x
Dhaouadi, 2014, Computational identification of potential transcriptional regulators of TGF-ß1 in human atherosclerotic arteries, Genomics, 103, 357, 10.1016/j.ygeno.2014.05.001
Hanna, 2011, The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes, Nat. Immunol., 12, 778, 10.1038/ni.2063
Hamers, 2012, Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis, Circ. Res., 110, 428, 10.1161/CIRCRESAHA.111.260760
Hanna, 2012, NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis, Circ. Res., 110, 416, 10.1161/CIRCRESAHA.111.253377
Chao, 2013, Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice, J. Lipid Res., 54, 806, 10.1194/jlr.M034157
Bonta, 2006, Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses, Arterioscler. Thromb. Vasc. Biol., 26, 2288, 10.1161/01.ATV.0000238346.84458.5d
McMorrow, 2011, Inflammation: a role for NR4A orphan nuclear receptors?, Biochem. Soc. Trans., 39, 688, 10.1042/BST0390688