RETRACTED: Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete
Tóm tắt
Từ khóa
Tài liệu tham khảo
1997
Sahmaran, 2005, Workability of hybrid fiber reinforced self-compacting concrete, J. Build. Environ., 40, 1672, 10.1016/j.buildenv.2004.12.014
M. Jalal, E. Mansouri, M. Sharifipour, A.R. Pouladkhan, Mechanical, rheological, durability and microstructural properties of high performance self compacting concrete containing SiO2 micro and nanoparticles, 2011, doi: 10.1016/j.matdes.08.037.
Jalal, 2013, Split tensile strength of binary blended self compacting concrete containing low volume fly ash and TiO2 nanoparticles, Composites B, 55, 324, 10.1016/j.compositesb.2013.05.050
Jalal, 2013, Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete, Mech. Mater., 61, 11, 10.1016/j.mechmat.2013.01.010
Gustavsson, 2010, Life cycle primary energy analysis of residential buildings, Energy Build., 42, 210, 10.1016/j.enbuild.2009.08.017
Blengini, 2010, The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings, Energy Build., 42, 869, 10.1016/j.enbuild.2009.12.009
Becchio, 2009, Improving environmental sustainability of concrete products: investigation on MWC thermal and mechanical properties, Energy Build., 41, 1127, 10.1016/j.enbuild.2009.05.013
Rosselló-Batle, 2010, Energy use, CO2 emissions and waste throughout the life cycle of a sample of hotels in the Balearic Islands, Energy Build., 42, 547, 10.1016/j.enbuild.2009.10.024
Goggins, 2010, The assessment of embodied energy in typical reinforced concrete building structures in Ireland, Energy Build., 42, 735, 10.1016/j.enbuild.2009.11.013
Bilodeau, 1994, Durability of concrete incorporating high volumes of fly ash from sources in US, ACI Mater. J., 91, 3
Shi, 2000, High performance cementing materials from industrial slags: a review, Resour. Conserv. Recycl., 29, 195, 10.1016/S0921-3449(99)00060-9
Tokyay, 1998
Bilodeau, 2000, High-volume fly ash system: concrete solution for sustainable development, ACI Mater. J., 97, 41
Malhotra, 1990, Superplasticized fly ash concrete for structural applications, Concr. Int., 8, 28
Bouzoubaa, 2001, Self-compacting concrete incorporating high volumes of Class F fly ash: preliminary results, Cem. Concr. Res., 31, 413, 10.1016/S0008-8846(00)00504-4
Nehdi, 2004, Durability of self-consolidating concrete incorporating high-volume replacement composite cements, Cem. Concr. Res., 34, 2103, 10.1016/j.cemconres.2004.03.018
Smith, 1975, The economic and environmental benefits of increased use of pfa and granulated slag, Resour. Policy, 1, 154, 10.1016/0301-4207(75)90030-6
Fava, 2003, 628
Kulakowski, 2009, Carbonation induced reinforcement corrosion in silica fume concrete, Constr. Build. Mater., 23, 10.1016/j.conbuildmat.2008.08.005
Shekarchi, 2010, Transport properties in metakaolin blended concrete, Constr. Build. Mater., 24, 2217, 10.1016/j.conbuildmat.2010.04.035
Ji, 2005, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cem. Concr. Res., 35, 1943, 10.1016/j.cemconres.2005.07.004
Jo, 2007, Characteristics of cement mortar with nano-SiO2 particles, Constr. Build. Mater., 21, 1351, 10.1016/j.conbuildmat.2005.12.020
Qing, 2007, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Constr. Build. Mater., 21, 539, 10.1016/j.conbuildmat.2005.09.001
Lin, 2008, Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar, J. Environ. Manage., 88, 708, 10.1016/j.jenvman.2007.03.036
Nazari, 2011, Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder, Energy Build., 43, 864, 10.1016/j.enbuild.2010.12.006
Fuller, 1907, The laws of proportioning concrete, Trans. Am. Soc. Civ. Eng., 33, 222
Andreasen, 1930, Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern [Mit einigen Experimenten], Kolloid-Zeitschrift, 50, 217, 10.1007/BF01422986
Brouwers, 2005, Self-compacting concrete: theoretical and experimental study, Cem. Concr. Res., 35, 2116, 10.1016/j.cemconres.2005.06.002
Girish, 2010, Influence of powder and paste on flow properties of SCC, Constr. Build. Mater., 24, 2481, 10.1016/j.conbuildmat.2010.06.008
2007
S. Nagataki, H. Fujiwara, Self-compacting property of highly-flowable concrete, in: V.M. Malhotra (Ed.), Am Concr Inst SP 154 301–14 June, 1995.
Khayat, 1999, Workability, testing and performance of self-consolidating concrete, ACI Mater. J., 96, 346
EFNARC, Specification & guidelines for self-compacting concrete, English ed. Norfolk (UK): European Federation for Specialist Construction Chemicals and Concrete Systems, 2002 (February).
BS 1881-116, Testing concrete, Method for determination of compressive strength of concrete cubes, 1983.
ASTM C696-96, Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book ASTM Standard, vol. 4(04.02), 2001.
2001
K. Audenaert, Transport mechanismen in zelfverdichtend beton in relatie met carbonatatie en chloride penetratie (Ph.D. thesis), Ghent University, Ghent, 2006.
Diamantonis, 2010, Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete, Constr. Build. Mater., 24, 1518, 10.1016/j.conbuildmat.2010.02.005
Mohammed, 2014, Macro/micro-pore structure characteristics and the chloride penetration of self-compacting concrete incorporating different types of filler and mineral admixture, Constr. Build. Mater., 72, 83, 10.1016/j.conbuildmat.2014.08.070
Zhang, 2012, Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag, Constr. Build. Mater., 29, 573, 10.1016/j.conbuildmat.2011.11.013
Senff, 2010, Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design, Constr. Build. Mater., 24, 1432, 10.1016/j.conbuildmat.2010.01.012
Wongkeo, 2014, Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume, Mater. Des., 64, 261, 10.1016/j.matdes.2014.07.042
Behfarnia, 2013, The effects of nano-silica and nano-alumina on frost resistance of normal concrete, Constr. Build. Mater., 48, 580, 10.1016/j.conbuildmat.2013.07.088
Sanchez, 2010, Nanotechnology in concrete – a review, Constr. Build. Mater., 24, 2060, 10.1016/j.conbuildmat.2010.03.014
Puentes, 2014, Effects of nano-components on early age cracking of self-compacting concretes, Constr. Build. Mater., 73, 89, 10.1016/j.conbuildmat.2014.09.061
Yu, 2014, A study of multiple effects of nano-silica and hybrid fibers on the properties of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA), Constr. Build. Mater., 60, 98, 10.1016/j.conbuildmat.2014.02.059
Beigi, 2013, An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete, Mater. Des., 50, 1019, 10.1016/j.matdes.2013.03.046
F. Massazza, Cemento 84 (October–December) (1987) 359–382.
National Material Advisory Board, Concrete Durability: A Multi-billion Dollar Opportunity, NMAB-437, National Academy Press, Washington, 1987.