RETRACTED: Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete

Construction and Building Materials - Tập 94 - Trang 90-104 - 2015
Mostafa Jalal1, Alireza Pouladkhan2, Omid F. Harandi3, Davoud Jafari4
1Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran
3Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
4Pishtazan Sanat Poolad Company, Isfahan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

1997

Okamura, 2003, Self-compacting concrete, J. Adv. Concr. Technol., 1, 5, 10.3151/jact.1.5

Sahmaran, 2005, Workability of hybrid fiber reinforced self-compacting concrete, J. Build. Environ., 40, 1672, 10.1016/j.buildenv.2004.12.014

M. Jalal, E. Mansouri, M. Sharifipour, A.R. Pouladkhan, Mechanical, rheological, durability and microstructural properties of high performance self compacting concrete containing SiO2 micro and nanoparticles, 2011, doi: 10.1016/j.matdes.08.037.

Jalal, 2013, Split tensile strength of binary blended self compacting concrete containing low volume fly ash and TiO2 nanoparticles, Composites B, 55, 324, 10.1016/j.compositesb.2013.05.050

Jalal, 2013, Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete, Mech. Mater., 61, 11, 10.1016/j.mechmat.2013.01.010

Gustavsson, 2010, Life cycle primary energy analysis of residential buildings, Energy Build., 42, 210, 10.1016/j.enbuild.2009.08.017

Blengini, 2010, The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings, Energy Build., 42, 869, 10.1016/j.enbuild.2009.12.009

Becchio, 2009, Improving environmental sustainability of concrete products: investigation on MWC thermal and mechanical properties, Energy Build., 41, 1127, 10.1016/j.enbuild.2009.05.013

Rosselló-Batle, 2010, Energy use, CO2 emissions and waste throughout the life cycle of a sample of hotels in the Balearic Islands, Energy Build., 42, 547, 10.1016/j.enbuild.2009.10.024

Goggins, 2010, The assessment of embodied energy in typical reinforced concrete building structures in Ireland, Energy Build., 42, 735, 10.1016/j.enbuild.2009.11.013

Bilodeau, 1994, Durability of concrete incorporating high volumes of fly ash from sources in US, ACI Mater. J., 91, 3

Shi, 2000, High performance cementing materials from industrial slags: a review, Resour. Conserv. Recycl., 29, 195, 10.1016/S0921-3449(99)00060-9

Tokyay, 1998

Bilodeau, 2000, High-volume fly ash system: concrete solution for sustainable development, ACI Mater. J., 97, 41

Malhotra, 1990, Superplasticized fly ash concrete for structural applications, Concr. Int., 8, 28

Bouzoubaa, 2001, Self-compacting concrete incorporating high volumes of Class F fly ash: preliminary results, Cem. Concr. Res., 31, 413, 10.1016/S0008-8846(00)00504-4

Nehdi, 2004, Durability of self-consolidating concrete incorporating high-volume replacement composite cements, Cem. Concr. Res., 34, 2103, 10.1016/j.cemconres.2004.03.018

Smith, 1975, The economic and environmental benefits of increased use of pfa and granulated slag, Resour. Policy, 1, 154, 10.1016/0301-4207(75)90030-6

Fava, 2003, 628

Kulakowski, 2009, Carbonation induced reinforcement corrosion in silica fume concrete, Constr. Build. Mater., 23, 10.1016/j.conbuildmat.2008.08.005

Shekarchi, 2010, Transport properties in metakaolin blended concrete, Constr. Build. Mater., 24, 2217, 10.1016/j.conbuildmat.2010.04.035

Ji, 2005, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cem. Concr. Res., 35, 1943, 10.1016/j.cemconres.2005.07.004

Jo, 2007, Characteristics of cement mortar with nano-SiO2 particles, Constr. Build. Mater., 21, 1351, 10.1016/j.conbuildmat.2005.12.020

Qing, 2007, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Constr. Build. Mater., 21, 539, 10.1016/j.conbuildmat.2005.09.001

Lin, 2008, Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar, J. Environ. Manage., 88, 708, 10.1016/j.jenvman.2007.03.036

Nazari, 2011, Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder, Energy Build., 43, 864, 10.1016/j.enbuild.2010.12.006

Fuller, 1907, The laws of proportioning concrete, Trans. Am. Soc. Civ. Eng., 33, 222

Andreasen, 1930, Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern [Mit einigen Experimenten], Kolloid-Zeitschrift, 50, 217, 10.1007/BF01422986

Brouwers, 2005, Self-compacting concrete: theoretical and experimental study, Cem. Concr. Res., 35, 2116, 10.1016/j.cemconres.2005.06.002

Girish, 2010, Influence of powder and paste on flow properties of SCC, Constr. Build. Mater., 24, 2481, 10.1016/j.conbuildmat.2010.06.008

2007

S. Nagataki, H. Fujiwara, Self-compacting property of highly-flowable concrete, in: V.M. Malhotra (Ed.), Am Concr Inst SP 154 301–14 June, 1995.

Khayat, 1999, Workability, testing and performance of self-consolidating concrete, ACI Mater. J., 96, 346

EFNARC, Specification & guidelines for self-compacting concrete, English ed. Norfolk (UK): European Federation for Specialist Construction Chemicals and Concrete Systems, 2002 (February).

BS 1881-116, Testing concrete, Method for determination of compressive strength of concrete cubes, 1983.

ASTM C696-96, Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book ASTM Standard, vol. 4(04.02), 2001.

2001

K. Audenaert, Transport mechanismen in zelfverdichtend beton in relatie met carbonatatie en chloride penetratie (Ph.D. thesis), Ghent University, Ghent, 2006.

Diamantonis, 2010, Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete, Constr. Build. Mater., 24, 1518, 10.1016/j.conbuildmat.2010.02.005

Mohammed, 2014, Macro/micro-pore structure characteristics and the chloride penetration of self-compacting concrete incorporating different types of filler and mineral admixture, Constr. Build. Mater., 72, 83, 10.1016/j.conbuildmat.2014.08.070

Zhang, 2012, Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag, Constr. Build. Mater., 29, 573, 10.1016/j.conbuildmat.2011.11.013

Senff, 2010, Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design, Constr. Build. Mater., 24, 1432, 10.1016/j.conbuildmat.2010.01.012

Wongkeo, 2014, Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume, Mater. Des., 64, 261, 10.1016/j.matdes.2014.07.042

Behfarnia, 2013, The effects of nano-silica and nano-alumina on frost resistance of normal concrete, Constr. Build. Mater., 48, 580, 10.1016/j.conbuildmat.2013.07.088

Sanchez, 2010, Nanotechnology in concrete – a review, Constr. Build. Mater., 24, 2060, 10.1016/j.conbuildmat.2010.03.014

Puentes, 2014, Effects of nano-components on early age cracking of self-compacting concretes, Constr. Build. Mater., 73, 89, 10.1016/j.conbuildmat.2014.09.061

Yu, 2014, A study of multiple effects of nano-silica and hybrid fibers on the properties of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA), Constr. Build. Mater., 60, 98, 10.1016/j.conbuildmat.2014.02.059

Beigi, 2013, An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete, Mater. Des., 50, 1019, 10.1016/j.matdes.2013.03.046

Qing, 2008, J. Wuhan Univ. Technol.: Mater. Sci. Ed., 21, 153, 10.1007/BF02840907

Garboczi, 1996, Constr. Build. Mater., 10, 293, 10.1016/0950-0618(94)00019-0

Grzeszczyk, 1997, Cem. Concr. Res., 27, 907, 10.1016/S0008-8846(97)00073-2

Fernandez, 1999, J. Mater. Sci. Mater. Med., 10, 223, 10.1023/A:1008958112257

F. Massazza, Cemento 84 (October–December) (1987) 359–382.

National Material Advisory Board, Concrete Durability: A Multi-billion Dollar Opportunity, NMAB-437, National Academy Press, Washington, 1987.

Ji, 2005, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cem. Concr. Res., 35, 1943, 10.1016/j.cemconres.2005.07.004