RETRACTED ARTICLE: Towards secure deep learning architecture for smart farming-based applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sanjeevi P, Siva Kumar B, Prasanna S et al (2020) An ontology enabled internet of things framework in intelligent agriculture for preventing post-harvest losses. Complex Intell Syst. https://doi.org/10.1007/s40747-020-00183-y
Feng Y, Wang D, Yin Y et al (2020) An XGBoost-based casualty prediction method for terrorist attacks. Complex Intell Syst. https://doi.org/10.1007/s40747-020-00173-0
Liu W, Li F, Jing C et al (2020) Recognition and location of typical automotive parts based on the RGB-D camera. Complex Intell Syst. https://doi.org/10.1007/s40747-020-00182-z
Suresh A, Reyana A, Varatharajan R (2018) CEMulti-core architecture for optimization of energy over heterogeneous environment with high performance smart sensor devices. Wirel Pers Commun 103:1239–1252. https://doi.org/10.1007/s11277-018-5504-0
Ji Z, Nie LH (2016) Texture image classication with noise-tolerant local binary pattern. J Comput Res Dev 53(5):11281135
Lioutas ED, Charatsari C (2020) Smart farming and short food supply chains: Are they compatible?, Land Use Policy 94:104541. https://doi.org/10.1016/j.landusepol.2020.104541. ISSN 0264-8377, http://www.sciencedirect.com/science/article/pii/S0264837719320484
Lioutasa ED, Charatsari C (2020) Smart farming and short food supply chains: are they compatible? Microprocess Microsyst. https://doi.org/10.1016/j.landusepol.2020.104541
Li S, Yao Y, Hu J, Liu G, Yao X, Hu J (2018) An ensemble stacked convolutional neural network model for environmental event sound recognition. Appl Sci. https://doi.org/10.3390/app8071152
Kermany DS et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131
Krauss C, Do XA, Huck N (2017) Deep neural networks, gradient boosted trees, random forests: statistical arbitrage on the S&P 500. Eur J Oper Res 259:689–702
Würfl T, Hoffmann M, Christlein V, Breininger K, Huang Y, Unberath M et al (2018) Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans Med Imaging 37:1454–1463
Yinan Y, Jiajin L, Wenxue Z, Chao L (2016) Target classification and pattern recognition using micro-Doppler radar signatures. In: Seventh ACIS international conference on software engineering, artificial intelligence, networking, and parallel/distributed computing, pp 213–217
Diamant I, Bar Y, Geva O, Wolf L, Zimmerman G, Lieberman S et al (2017) Chest radiograph pathology categorization via transfer learning. In: Deep learning for medical image analysis. Elsevier, pp 299–320
Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T et al (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79:3055–3071
Tokognon B, Gao G, Tian Y (2017) Structural health monitoring framework based on Internet of Things: a survey. IEEE Internet Things J 4(3):619–635
Mehta M, Agrawal R, Rissanen J (1996) SLIQ: a fast scalable classier for data mining. In: Proceedings of the fifth international conference on extending database technology (EDBT), Avignon, France
Panchal G, Ganatra A (2012) Optimization of neural network parameter using genetic algorithm. Lambert Academic Publishing, Germany
Gutiérrez PA, Martínez C (2012) Hybrid artificial neural networks: models, algorithms and data, vol 6692, pp 177–184
Olaronke I, Oluwaseun O (2016) Big data in healthcare: prospects challenges and resolutions. In: Proceedings of future technologies conference (FTC), December 2016, pp 1152–1157
Altun Y, Hofmann T, Johnson M (2003) Discriminative learning for label sequences via boosting. In: Becker STS, Obermayer K (eds) Advances in neural information processing systems 15. MIT Press, Cambridge, pp 977–984
Suresh A, Kumar R, Varatharajan R (2020) Health care data analysis using evolutionary algorithm. J Supercomput 76:4262–4271. https://doi.org/10.1007/s11227-018-2302-0
Altun Y, Hofmann T, Smola A (2004) Gaussian process classification for segmenting and annotating sequences. In: Proceedings of 21st international conference on machine learning (ICML), Banff, Alberta, Canada
Suresh A, Udendhran R, Balamurgan M (2020) Hybridized neural network and decision tree based classifier for prognostic decision making in breast cancers. Soft Comput 24:7947–7953. https://doi.org/10.1007/s00500-019-04066-4
Geetha R, Sivasubramanian S, Kaliappan M et al (2019) Cervical cancer identification with synthetic minority oversampling technique and PCA analysis using random forest classifier. J Med Syst 43:286. https://doi.org/10.1007/s10916-019-1402-6
Arularasan AN, Suresh A, Seerangan K (2019) Identification and classification of best spreader in the domain of interest over the social networks. Cluster Comput 22:4035–4045. https://doi.org/10.1007/s10586-018-2616-y