RETRACTED ARTICLE: Bidirectional DC-DC converter circuits and smart control algorithms: a review

V. Viswanatha1, A. C. Ramachandra2, R. Venkata Siva Reddy3
1Nitte Meenakshi Institute of Technology, Bangalore, India
2Electronics and Communication Department, Nitte Meenakshi Institute of Technology, Bangalore, India
3Electronics and Communication Department, REVA University, Bangalore, India

Tóm tắt

The entire article has been dedicated to cover the current state of the art in bidirectional DC-DC converter topologies and its smart control algorithms, identified the research gaps and concluded with the motivation for taking up the work. It covers the literature survey of bidirectional buck–boost DC-DC converters, and control schemes are carried out on two aspects, one is on topology perspective and another one is on control schemes. Different topologies with and without transformers of bidirectional DC-DC converters are discussed. Non-isolated converters establish the DC path between input and output sides while transformer-based converters cancel the DC path in between input and output sides since it introduces AC line between two DC lines just like in flyback converter. Transformer-less converter is preferred when there is no much protection needed for load from high voltage levels, also these converters are used in high-power applications. The bidirectional DC-DC converter can switch the power between two DC sources and the load. To do so, it has to use proper control schemes and control algorithms. It can store the excess energy in batteries or in super capacitors. In contrast, isolated topologies contain transformers in their circuits. Due to this, it offers advantages like safeguarding sensitive loads from high power which is at input side. In addition to it, multiple input and output ports can be established. With the isolation in DC-DC converters, input and output sections are separated from electrical stand point of view. With isolation, both input and output sections will not be having common ground point. The DC path is removed with isolation due to usage of transformer in DC-DC converters. In contrast to its features, it is capable to be used in low-power applications since transformer is switching at high frequency, the size of the coil reduces and hence it can handle limited rate of current. The bidirectional DC-DC converters are categorized based on isolation property so-called isolated bidirectional converters. Features and applications of each topology are presented. Comparative analysis w.r.t research gaps between all the topologies is presented. Also the scope of control schemes with artificial intelligence is discussed. Pros and cons of each control scheme, i.e. research gaps in control schemes and impact of control scheme for bidirectional DC-DC converters, are also presented.

Tài liệu tham khảo

Onar OC, Kobayashi J, Erb DC, Khaligh A (2012) A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs. IEEE Trans Veh Technol 61(5):2018–2032 Zhang Z, Chau K (2017) Pulse-width-modulation-based electromagnetic interference mitigation of bidirectional grid- connected converters for electric vehicles. IEEE Trans Smart Grid 8(6):2803–2812 Naden M, Bax R (2003) Generator with DC boost and split bus bidirectional DC-to-DC converter for uninterruptible power supply system or for enhanced load pickup. US Patent, US7786616B2 Naayagi RT, Forsyth AJ, Shuttleworth R (2012) High-power bidirectional DC–DC converter for aerospace applications. IEEE Trans Power Electron 27(11):4366–4379 Chao K, Huang C (2014) Bidirectional DC-DC soft-switching converter for stand-alone photovoltaic power generation systems. IET Power Electron 7(6):1557–1565 Jin K, Yang M, Ruan X, Xu M (2010) Three-level bidirectional converter for fuel-cell/battery hybrid power system. IEEE Trans Ind Electron 57(6):1976–1986 Viswanatha V (2018) Microcontroller based bidirectional buck–boost converter for photo-voltaic power plant. J Electric Syst Inform Technol 5:745–758 Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B (2017) Step-Up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans Power Electron 32(12):9143–9178 Tytelmaier K, Husev O, Veligorskyi O, Yershov R (2016) A review of non-isolated bidirectional dc-dc converters for energy storage systems. Proc. YSF 2016, Kharkiv, pp. 22–28 Du Y, Zhou X, Bai S, Lukic S, Huang A (2010) Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks. Proc. IEEE APEC 2010, Palm Springs, CA, 2010, pp. 1145–1151 Abbas AF, Esam AHI, Sabzali AJ, Al-Saffar M (2014) A Bidirectional converter for high-efficiency fuel cell powertrain. J Power Sources 249:470–482 Matsuo H, Kurokawa F (1984) New solar cell power supply system using a boost type bidirectinal DC-DC converter. IEEE Trans Ind Electron 31:51–55 Caricchi F, Crescimbini F, Noia G, Pirolo D (1994) Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles. Proc. IEEE ASPEC'94, 1994, Orlando, FL, USA, pp. 381–386 Middlebrook RD, Cuk S, Behen W (1978) A new battery charger/discharger converter. Proc. IEEE PESC, 1978 ,Syracuse, NY, pp. 251–255 Cuk S (1983) A new zero-ripple switching DC-to-DC converter and integrated magnetics. IEEE Trans Magn 19(2):57–75 Majo J, Martinez L, Poveda A et al (1992) Large-signal feedback control of a bidirectional coupled-inductor Cuk converter. IEEE Trans Ind Electron 39(5):429–436 Kim I, Paeng S, Ahn J, Nho E, Ko J (2007) New bidirectional ZVS PWM Sepic/Zeta DC- DC Converter. Proc. IEEE International Symposium on Industrial Electronics, 2007, Vigo, pp. 555–560 Song M-S, Son Y-D, Lee K-H (2014) Non-isolated bidirectional soft-switching SEPIC/ZETA converter with reduced ripple currents. J Power Electron 14(4):649–660 Caricchi F, Crescimbini F, Capponi FG, Solero L (1998) Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives. Proc. APEC '98, 1998, Anaheim, CA, USA, pp. 287–293 Lee H, Yun J (2019) High-efficiency bidirectional buck-boost converter for photovoltaic and energy storage system in smart grid. IEEE Trans Power Electron 34(5):4316 Chung HS, Ioinovici A, Cheung W-L (2003) Generalized structure of bi-directional switched-capacitor DC/DC converters. IEEE Trans Circuits Syst I 50(6):743–753 Chung HSH, Chow WC, Hui SYR, Lee STS (2000) Development of a switched-capacitor DC-DC converter with bidirectional power flow. IEEE Trans Circuits Syst I 47(9):1383–1389 Zhang J, Lai J, Yu W (2008) Bidirectional DC-DC converter modeling and unified controller with digital implementation. Proc. IEEE APEC’08, 2008, Austin, TX, pp. 1747–1753 Garcia O, Zumel P, de Castro A, Cobos A (2006) Automotive DC-DC bidirectional converter made with many interleaved buck stages. IEEE Trans Power Electron 21(3):578–586 Huang X, Lee FC, Li Q, Du W (2016) High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor. IEEE Trans Power Electron 31(6):4343–4352 Wang Y, Xue L, Wang C, Wang P, Li W (2016) Interleaved high-conversion-ratio bidirectional DC–DC converter for distributed energy-storage systems—circuit generation, analysis, and design. IEEE Trans Power Electron 31(8):5547–5561 Peng FZ, Zhang F, Qian Z (2002) A magnetic-less DC-DC converter for dual voltage automotive systems. Proc. IEEE IAS ‘02, 2002, Pittsburgh, PA, USA, pp. 1303–1310 Gorji SA, Ektesabi M, Zheng J (2017) Isolated switched-boost push–pull DC–DC converter for step-up applications. IET Electron Lett 53(3):177–179 Viswanatha V, Venkata Siva Reddy R, Rajeswari (2019) Stability and Dynamic Response of Analog and Digital Control loops of Bidirectional buck-boost Converter for Renewable Energy Applications. International Journal of Recent Technology and Engineering 8(2):5181–5186 Gorji SA, Mostaan A, Tran My H, Ektesabi M (2019) A new non-isolated buck-boost DC-DC converter with quadratic voltage gain ratio. IET Power Electron 12:1425–1433 Delshad M, Farzanehfard H (2010) A new isolated bidirectional buck-boost PWM converter. Proc. PEDSTC, 2010, Tehran, Iran, pp. 41–45 Aboulnaga AA, Emadi A (2004) Performance evaluation of the isolated bidirectional Cuk converter with integrated magnetics. Proc. IEEE APEC’04, 2004, Aachen, Germany, l(2): 1557-1562 Ruseler A, Barbi I (2013) Isolated Zeta-SEPIC bidirectional dc-dc converter with active-clamping. Proc. Brazilian Power Electronics Conference, Gramado, pp. 123–128 Kwon M, Park J, Choi S (2016) A bidirectional three-phase push-pull converter with dual asymmetrical PWM method. IEEE Trans Power Electron 31(3):1887–1895 Viswanatha V, Venkata Siva Reddy R, Rajeswari (2020) Research on state space modeling, stability analysis and PID/PIDN Control of DC–DC converter for digital implementation. In: Sengodan T., Murugappan M., Misra S. (eds) Advances in Electrical and Computer Technologies. Lecture Notes in Electrical Engineering, 672: 1255–1272 Khodabakhshian M, Adib E, Farzanehfard H (2016) Forward-type resonant bidirectional DC–DC converter. IET Power Electron 9(8):1753–1760 Zhang F, Yan Y (2009) Novel forward-flyback hybrid bidirectional DC–DC converter. IEEE Trans Ind Electron 56(5):1578–1584 Zhang Z, Thomsen OC, Andersen MAE (2012) Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional DC–DC converter with variable input voltage. IEEE Trans Ind Electron 59(7):2761–2771 Viswanatha V, Venkata Siva Reddy R (2017) Digital control of buck converter using arduino microcontroller for low power applications. 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon). IEEE, 2017 De Doncker RWAA, Divan DM, Kheraluwala MH (1991) A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans Ind Appl 27(1):63–73 Krismer F, Kolar JW (2010) Accurate power loss model derivation of a high-current dual active bridge converter for an automotive application. IEEE Trans Ind Electron 57(3):881–891 Zhao B, Song Q, Liu W, Sun Y (2014) Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system. IEEE Trans Power Electron 29(8):4091–4106 Li X, Bhat AKS (2010) Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter. IEEE Trans Power Electron 25(4):850–862 Chen W, Rong P, Lu Z (2010) Snubberless bidirectional DC–DC converter with new CLLC resonant tank featuring minimized switching loss. IEEE Trans Ind Electron, 57(9): 3075–3086 Jung J, Kim H, Ryu M, Baek J (2013) Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems. IEEE Trans Power Electron 28(4):1741–1755 Xu X, Khambadkone MA, Oruganti R (2007) A Soft-Switched Back-to-Back Bi-directional DC/DC Converter with a FPGA based Digital Control for Automotive applications. Proc. IEEE IECON '07, 2007, pp. 262–267, He P, Khaligh A (2017) Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems. IEEE Trans Trans Electrification 3(1):147–156 Viswanatha V (2017) A complete mathematical modeling, simulation and computational implementation of boost converter via MATLAB/Simulink. pp.407–419 Hui Li, Peng FZ, Lawler JS (2001) A natural ZVS high-power bi-directional DC-DC converter with minimum number of devices. Proc. IEEE IAS, 2001, Chicago, IL, USA, pp. 1874–1881 Park S, Song Y (2011) An interleaved half-bridge bidirectional dc-dc converter for energy storage system applications. 8th International Conference on Power Electronics - ECCE Asia, Jeju, 2011, pp. 2029–2034. Morrison R, Egan MG (2000) A new power-factor-corrected single-transformer UPS design. IEEE Trans Ind Appl 36(1):171–179 Du Y, Lukic S, Jacobson B, Huang A (2011) Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure. Proc. IEEE ECCE, 2011, Phoenix, AZ, pp. 553–560 Chub A, Vinnikov D, Kosenko R, Liivik L, Galkin I (2019) Bidirectional DC-DC converter for modular residential battery energy storage systems. IEEE Trans Ind Electron, pp. 1944–1955 Viswanatha V, Venkata Siva Reddy R (2020) Characterization of analog and digital control loops for bidirectional buck–boost converter using PID/PIDN algorithms. J Electric Syst Inform Technol 7(1):1–25 Gorji SA, Ektesabi M, Zheng J (2016) Double-input boost/Y-source DC-DC converter for renewable energy sources. Proc. IEEE SPEC 16, 2016, Auckland, pp. 1–6 Zhao C, Round SD, Kolar JW (2008) An isolated three-port bidirectional DC-DC converter with decoupled power flow management. IEEE Trans Power Electron 23(5):2443–2453 Hamasaki S, Mukai R, Tsuji M (2012) Control of power leveling unit with super capacitor using bidirectional buck/boost DC/DC converter. Proc. ICRERA, 2012, Nagasaki, pp. 1–6 Ding S, Wu H, Xing Y, Fang Y, Ma X (2013) Topology and control of a family of non-isolated three-port DC-DC converters with a bidirectional cell. Proc. IEEE APEC, 2013, Long Beach, CA, pp. 1089–1094 Lee J et al (2013) Auxiliary switch control of a bidirectional soft-switching DC/DC converter. IEEE Trans Power Electron 28(12):5446–5457 Engelen K, Breucker SD, Tant P, Driesen J (2014) Gain scheduling control of a bidirectional dc-dc converter with large dead-time. IET Power Electron 7(3):480–488 Filsoof K, Lehn PW (2016) A Bidirectional multiple-input multiple-output modular multilevel DC–DC converter and its control design. IEEE Trans Power Electron 31(4):2767–2779 Cornea O, Andreescu G, Muntean N, Hulea D (2017) Bidirectional power flow control in a DC microgrid through a switched-capacitor cell hybrid DC–DC converter. IEEE Trans Ind Electron 64(4):3012–3022 Tijerina Araiza A, Meza Medina JL (1995) Variable structure with sliding mode controls for DC motors. Proc. CIEP 95, 1995, San Luis Potosi, Mexico, pp. 26–28 Martinez-Salamero L, Calvente J, Giral R et al (1998) Analysis of a bidirectional coupled-inductor Cuk converter operating in sliding mode. IEEE Trans Circuits Syst I 45(4):355–363 Tahim APN, Pagano DJ, Ponce E (2012) Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids. Proc. IEEE CDC 12, 2012, Maui, HI, pp. 3068–3073 Romero A, Martinez-Salamero L, Valderrama H et al (1998) General purpose sliding-mode controller for bidirectional switching converters. Proc. IEEE ISCAS '98, 1998, Monterey, CA, pp. 466–469 Ciccarelli F, Lauria D (2010) Sliding-mode control of bidirectional dc-dc converter for supercapacitor energy storage applications. Proc. SPEEDAM 2010, 2010, Pisa, pp. 1119–1122 Agarwal A, Deekshitha K, Singh S, Fulwani D (2015) Sliding mode control of a bidirectional DC/DC converter with constant power load. Proc. ICDCM, 2015, Atlanta, GA, pp. 287–292 Dominguez X, Camacho O, Leica P, Rosales A (2016) A fixed-frequency Sliding-mode control in a cascade scheme for the Half-bridge Bidirectional DC-DC converter. Proc. IEEE ETCM, 2016, Guayaquil, pp. 1–6 Cao J, Cao B, Bai Z, Chen W (2007) Energy-regenerative fuzzy sliding mode controller design for ultracapacitor-battery hybrid power of electric vehicle. Proc. International Conference on Mechatronics and Automation, 2007, Harbin, pp. 1570–1575 Samosir AS, Yatim AHM (2008) Dynamic evolution control of bidirectional DC-DC converter for interfacing ultra-capacitor energy storage to Fuel Cell Electric Vehicle system. Proc. AUPEC, 2008, Sydney, NSW, pp. 1–6 Samosir AS, Yatim AHM (2010) Implementation of dynamic evolution control of bidirectional DC–DC converter for interfacing ultracapacitor energy storage to fuel-cell system. IEEE Trans Ind Electron 57(10):3468–3473 Pirooz A, Noroozian R (2016) Model predictive control of classic bidirectional DC-DC converter for battery applications. Proc. PEDSTC, 2016, Tehran, Iran, pp. 517–522 Ebad M, Song B (2012) Accurate model predictive control of bidirectional DC-DC converters for DC distributed power systems. Proc. IEEE Power and Energy Society General Meeting, 2012, San Diego, CA, pp. 1–8, 2012 LIPING G. – HUNG J.Y. – NELMS R.M. (2009) Evaluation of DSP-Based PID and fuzzy controllers for DC–DC Converters, IEEE Transactions on Industrial Electronics, 56(6): 2237–2248 Hussain Sarwar K, Ihab SM, Kimmo K, Lantao L (2021) Artificial neural network-based voltage control of DC/DC converter for dc microgrid applications. In: 6th IEEE Workshop on the Electronic Grid , pp.1–6 Kanthi Mathew K, Dolly Mary A (2021) Particle swarm optimization based sliding mode controllers for electric vehicle on board charger. Comput Electric Eng, 96, Part A Das T, Roy R, Mandal KK (2020) Impact of the penetration of distributed generation on optimal reactive power dispatch. Prot Control Mod Power Syst , pp.5–31 Osorio R, Alonso JM, Vazquez N, Pinto SE, Sorcia-Vazquez FD, Martinez M, Barrera LM (2018) Fuzzy logic control with an improved algorithm for integrated LED drivers. IEEE Trans Ind Electron 65(9):6994–7003 Bubshait A, Simoes MG (2018) Design of fuzzy logic-based dynamic droop controller of wind turbine system for primary frequency support. In: IEEE Industry Appl. Soc. Ann. Meeting, pp. 1–7 Chen WQ, Bazzi AM (2017) Logic-based methods for intelligent fault diagnosis and recovery in power electronics. IEEE Trans Power Electron 32(7):5573–5589 Simoes MG, Bubshait A (2019) Frequency support of smart grid using fuzzy logic-based controller for wind energy systems. Energies 12(8):1–15 Bose BK (2017) Artificial intelligence techniques in smart grid and renewable energy systems-some example applications. Proc IEEE 105(11):2262–2273 Soualhi A, Makdessi M, German R, Echeverria FR, Razik H, Sari A, Venet P, Clerc G (2018) Heath monitoring of capacitors and supercapacitors using the neo-fuzzy neural approach. IEEE Trans Ind Informat 14(1):24–34 Zhao S, Blaabjerg F, Wang H (2021) An overview of artificial intelligence applications for power electronics. IEEE Trans Power Electron 36(4):4633–4658 Duchesne L, Karangelos E, Wehenkel L (2020) Recent developments in machine learning for energy systems reliability management Proc. IEEE. Joao Pinto RCG, Burak Ozpineci (2019) Tutorial: Artificial intelligence applications to power electronics. In: IEEE Energy Convers Congr Expo, pp. 1–139 Liu R, Yang B, Zio E, Chen X (2018) Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech Syst Signal Process 108:33–47 Zhao S, Makis V, Chen S, Li Y (2019) Health assessment method for electronic components subject to condition monitoring and hard failure. IEEE Trans Instrum Meas 68(1):138–150 Ndjependa PR, Boum AT, Essiane SN (2021) A novel approach of a dynamic multi objective optimization of a power distribution system. J Electric Syst Inf Technol 8:17 Glavic M, Fonteneau R, Ernst D (2017) Reinforcement learning for electric power system decision and control: Past considerations and perspectives. IFAC Papersonline 50(1):6918–6927 Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press Kofinas P, Doltsinis S, Dounis AI, Vouros GA (2017) A reinforcement learning approach for MPPT control method of photovoltaic sources. Renew Energy 108:461–473