RETRACTED ARTICLE: A critical assessment of extreme events trends in times of global warming

G. Alimonti1, Luigi Mariani2, F. Prodi3, R. A. Ricci4
1INFN & Università degli Studi, Milano, Italy
2Università degli Studi, Milano – DISAA, Milano, Italy
3Accademia Nazionale delle Scienze, Verona, Italy
4Laboratori Nazionali di Legnaro, INFN, Università di Padova, Padua, Italy

Tóm tắt

Abstract

This article reviews recent bibliography on time series of some extreme weather events and related response indicators in order to understand whether an increase in intensity and/or frequency is detectable. The most robust global changes in climate extremes are found in yearly values of heatwaves (number of days, maximum duration and cumulated heat), while global trends in heatwave intensity are not significant. Daily precipitation intensity and extreme precipitation frequency are stationary in the main part of the weather stations. Trend analysis of the time series of tropical cyclones show a substantial temporal invariance and the same is true for tornadoes in the USA. At the same time, the impact of warming on surface wind speed remains unclear. The analysis is then extended to some global response indicators of extreme meteorological events, namely natural disasters, floods, droughts, ecosystem productivity and yields of the four main crops (maize, rice, soybean and wheat). None of these response indicators show a clear positive trend of extreme events. In conclusion on the basis of observational data, the climate crisis that, according to many sources, we are experiencing today, is not evident yet. It would be nevertheless extremely important to define mitigation and adaptation strategies that take into account current trends.

Từ khóa


Tài liệu tham khảo

https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-AnnexII_FINAL.pdf

M. Brunetti, F. Prodi. (2015). https://doi.org/10.1051/epjconf/20159802001

F. Prodi, Esiste un’emergenza climatica? (2020). https://agenda.infn.it/event/23656/contributions/120556/attachments/75192/96202/Video_SIF_2020.mp4?fbclid=IwAR28LcDwQDdhh-86_quIDgYLxOSGb3HMaRge8m_Y1xRRcQCwIf5Mxe3n7XU

R.J.H. Azorin-Molina, L. Dunn, C. Ricciardulli, A. Mears, T.R. McVicar, J.P. Nicolas, G.P. Compo, C.A. Smith. (2020). https://doi.org/10.1175/2020BAMSStateoftheClimate.1

Z. Zeng et al. (2019). https://doi.org/10.1038/s41558-019-0622-6

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/report/ar5/wg1/

S.E. Perkins-Kirkpatrick, S.C. Lewis. (2020). https://doi.org/10.1038/s41467-020-16970-7

Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK, and New York, NY, USA. https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/

G. Formetta, L. Feyen. (2019). https://doi.org/10.1016/j.gloenvcha.2019.05.004

WMO: Tropical cyclones. https://public.wmo.int/en/our-mandate/focus-areas/natural-hazards-and-disaster-risk-reduction/tropical-cyclones

R.E. Todd, T.G. Asher, J. Heiderich, J.M. Bane, R.A. Luettich. (2018).https://doi.org/10.1029/2018GL079180

S. Mohleji, R. Pielke Jr. (2014). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000141

C. Loehle, E. Staehling. (2020).https://doi.org/10.1007/s11069-020-04219-x

B. Xiang, X. Dong, Yonghua. (2020). https://doi.org/10.1080/16742834.2020.1752110

H. Diamond, J., C.J. Schreck. (2020). https://doi.org/10.1175/BAMS-D-21-0080.1

R. Maue. (2011). https://doi.org/10.1029/2011GL047711

NOAA: Global Warming and Hurricanes. https://www.gfdl.noaa.gov/global-warming-and-hurricanes/

C.W.Landsea et al. (2010). https://doi.org/10.1175/2009JCLI3034.1

NOAA: The Tornado FAQ. https://www.spc.noaa.gov/faq/tornado/

E. Jon, Violent storms, TAB books, pp. 227. (1988)

WMO: Tornado intensity. https://cloudatlas.wmo.int/en/tornado-intensity.html

J. Wurman, K. Kosiba, T. White, P. Robinson. (2021). https://doi.org/10.1073/pnas.2021535118

NOAA: Tornado Historical Records and Trends. https://www.ncdc.noaa.gov/climate-information/extreme-events/us-tornado-climatology/trends

H. Masoomi, J.W. van de Lindt. (2018). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000295

C.M. Thomas, B. Dong, K. Haines. (2020). https://doi.org/10.1175/JCLI-D-19-0343.1

J.P. Peixoto, A.H. Oort, Physics of climate (American Institute of Physics, New York, 1992), pp. 270–307

A.A. Lacis, G.A. Schmidt, R. Ruedy. (2010). https://doi.org/10.1126/science.1190653

Ø. Hodnebrog et al. (2019). https://doi.org/10.5194/acp-19-12887-2019

R.J.H. Dunn, L.V. Alexander, M.G. Donat, X. Zhang, M. Bador, N. Herold, et al. (2020). https://doi.org/10.1029/2019JD032263

L. Agel, M. Barlow, J. Qian, F. Colby, E. Douglas, Eichler T. (2015). https://doi.org/10.1175/JHM-D-14-0147.1

R. Barbero, H.J. Fowler, G. Lenderink, S. Blenkinsop. (2017). https://doi.org/10.1002/2016GL071917

Q. Sun, X. Zhang, F. Zwiers, S. Westra, L.V. Alexander. (2021). https://doi.org/10.1175/JCLI-D-19-0892.1

J.R. Metcalfe, B. Routledge, K. Devine. (1997). https://doi.org/10.1175/1520-0442(1997)010%3C0092:RMICCO%3E2.0.CO;2

S.M. Papalexiou, A. Montanari. (2019). https://doi.org/10.1029/2018WR024067

S. Westra et al. (2013). https://doi.org/10.1175/JCLI-D-12-00502.1

J.I. López-Moreno, S.M. Vicente-Serrano. (2008). https://doi.org/10.1175/2007JCLI1739.1

A. Libertino, D. Ganora, P. Claps (2019). https://doi.org/10.1029/2019GL083371

S.A. Archfield, R.M. Hirsch, A. Viglione, G. Blöschl. (2016). https://doi.org/10.1002/2016GL070590

G. Blöschl et al. (2017). https://doi.org/10.1126/science.aan2506

H.X. Do, S. Westra, M. Leonard. (2017). https://doi.org/10.1016/j.jhydrol.2017.06.015

P.Y. Groisman, R.W. Knight, T.R. Karl. (2001). https://doi.org/10.1175/1520-0477(2001)082%3C0219:HPAHSI%3E2.3.CO;2

J. Hall et al. (2014). https://doi.org/10.5194/hess-18-2735-2014

G.A. Hodgkins et al. (2017). https://doi.org/10.1016/j.jhydrol.2017.07.027

H.F. Lins, J.R. Slack. (1999). https://doi.org/10.1029/1998GL900291

G.J. McCabe, D.M. Wolock. (2002). https://doi.org/10.1029/2002GL015999

X.S. Zhang et al. (2016). https://doi.org/10.5194/hess-20-3947-2016

A. Sharma, C. Wasko, D.P. Lettenmaier. (2018). https://doi.org/10.1029/2018WR023749

S.B. Wirth et al. (2013). https://doi.org/10.1016/j.quascirev.2013.09.002

R. Glaser, D. Riemann, J. Schönbein, et al. (2010). https://doi.org/10.1007/s10584-010-9816-7

B. Wilhelm et al. (2012). https://doi.org/10.1016/j.yqres.2012.03.003

P. Yiou et al. (2006). https://doi.org/10.1623/hysj.51.5.930

M. Mudelsee, M. Börngen, G. Tetzlaff et al. (2003). https://doi.org/10.1038/nature01928

M. Mudelsee, M. Börngen, G. Tetzlaff, U. Grünewald. (2004). https://doi.org/10.1029/2004JD005034

N. Diodato, F.C. Ljungqvist, G. Bellocchi. (2019). https://www.nature.com/articles/s41598-019-46207-7

C. Taricco, S. Alessio, S. Rubinetti et al. (2015). https://doi.org/10.1038/srep12111

G. Van Der Schrier, J. Barichivich, K.R. Briffa, P. Jones. (2013). https://doi.org/10.1002/jgrd.50355

J. Sheffield, E. Wood, M. Roderick. (2012). https://doi.org/10.1038/nature11575

Z. Hao, A. AghaKouchak, N. Nakhjiri et al. (2014). https://doi.org/10.1038/sdata.2014.1

F. Kogan, W. Guo, W. Yang. (2020). https://doi.org/10.1080/19475705.2020.1730452

S.J. Zwart, W.G.M. Bastiaanssen. (2004). https://doi.org/10.1016/j.agwat.2004.04.007

X. Lian, S. Piao, L.Z.X. Li. (2020). https://doi.org/10.1126/sciadv.aax0255

E. Driesen, W. van den Ende, M. De Proft, W. Saeys. (2020). https://doi.org/10.3390/agronomy10121975

S. Piao, X. Wang, T. Park, et al. (2020). https://doi.org/10.1038/s43017-019-0001-x

A.P. Walker et al. (2020). https://doi.org/10.1111/nph.16866

Z. Zhu, S. Piao, R. Myneni et al. (2016). https://doi.org/10.1038/nclimate3004

J. Mao, A. Ribes, B. Yan et al. (2016). https://doi.org/10.1038/nclimate3056

J. Campbell, J. Berry, U. Seibt et al. https://doi.org/10.1038/nature22030

M. Wang, S. Wang, J. Zhao, W. Ju, Z. Hao. (2021). https://doi.org/10.1016/j.scitotenv.2021.145703

N. Zeng, F. Zhao, G. Collatz et al. (2014). https://doi.org/10.1038/nature13893

F. Krausmann. (2013). https://doi.org/10.1073/pnas.1211349110

Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.) In press. https://www.ipcc.ch/srccl/

Haverd et al. (2020). https://doi.org/10.1111/gcb.14950

L. Mariani. (2017). https://doi.org/10.1140/epjp/i2017-11337-8

L. Mariani, A. Ferrero, G. Cola. (2021). https://doi.org/10.1002/agj2.20710

A. Smith, An Inquiry into the Nature and Causes of the Wealth of Nations, (Glasgow edition of works, Vol. 2, 1776)

G. Targioni Tozzetti, Cronica meteorologica della Toscana per il tratto degli ultimi sei secoli relativa principalmente all'agricoltura (Alimurgia, 1767 ), pt. III

G. Federico, Feeding the World: An Economic History of Agriculture, 1800–2000. (Princeton and Oxford: Princeton University Press. Cloth) pp 416

D. Tilman, C. Balzer, J. Hill, B.L. Befort. (2011). https://doi.org/10.1073/pnas.1116437108

Data from Faostat. http://www.fao.org/faostat/en/

D. Guha-Sapir et al., Thirty years of natural disasters 1974–2003: The numbers (Presses Universitaires de Louvain: Louvain-La-Neuve, 2004) https://www.emdat.be/thirty-years-natural-disasters-1974-2003-numbers

J-M. Scheuren et al., Annual Disaster Statistical Review: Numbers and Trends. (2007). https://www.cred.be/node/316

The human cost of natural disasters: a global perspective. (CRED, 2015) http://www.cred.be/sites/default/files/The_Human_Cost_of_Natural_Disasters_CRED.pdf