RESTRICTION FRAGMENT LENGTH POLYMORPHISM OF RIBOSOMAL DNA INTERNAL TRANSCRIBED SPACER AND 5.8S REGIONS IN JAPANESE ALEXANDRIUM SPECIES (DINOPHYCEAE)1

Journal of Phycology - Tập 30 Số 5 - Trang 857-863 - 1994
Masao Adachi1, Yoshihiko Sako1, Yūzaburō Ishida1
1Laboratory of Microbiology, Department of Fisheries, Faculty of Agriculture, Kyoto University, Kyoto 606–01, Japan

Tóm tắt

ABSTRACTThe 5.8S ribosomal RNA (rDNA) gene and flanking internal transcribed spacers (ITS1 and ITS2)from 9 isolates of Alexandrium catenella (Whedon and Kofoid) Taylor, 11 isolates of A. tamarense (Lebour) Taylor, and single isolates of A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from various locations in Japan were amplified using the polymerase chain reaction (PCR) and subjected to restriction fragment‐length polymorphism (RFLP) analysis. PCR products from all strains were approximately 610 bp, inclusive of a limited region of the 18S and 28S rRNA coding regions. RFLP analysis using four restriction enzymes revealed six distinct classes of rDNA (“ITS types”). Restriction patterns of A. catenella were uniform at the intra‐specific level and clearly distinguishable from those of A. tamarense. The patterns associated with A. tamarense (“tamarense group”) were also uniform except for one strain, WKS‐1. Some restriction fragments from WKS‐1 were in common with those of A. catenella or A. tamarense, whereas some were distinct from all Alexandrium species tested. Alexandrium affine, A. insuetum, and A. pseudogonyaulax carry unique ITS types. The ITSs of the “tamarense group” exhibit sequence heterogeneity. In contrast, the ITSs of all other isolates (including WKS‐1) appear homogeneous. RFLP analysis of the 5.8S rDNA and flanking ITSs regions from Alexandrium species reveals useful taxonomic and genetic markers at the species and/or population levels.

Từ khóa


Tài liệu tham khảo

10.2331/suisan.59.327

10.2331/suisan.59.1171

10.2331/suisan.59.1807

Appels R., 1986, DNA Systematics, Vol. II, Plants, 81

10.1111/j.0022-3646.1992.00660.x

Balech E., 1985, Toxic Dinoflagellates, 33

Balech E., 1990, Toxic Marine Phytoplankton, 77

Brasier C. M., 1991, Phytophthora. British Mycological Society Symposium, 17, 104

10.1016/0305-1978(86)90107-9

10.1016/0378-1119(86)90057-0

10.2216/i0031-8884-31-1-121.1

Fukuyo Y., 1985, Morphology of Protogonyaulax tamarensis (Lebour) Taylor and Protogonyaulax catenella (Whedon and Kofoid) Taylor from Japanese coastal waters, Bull. Mar. Sci., 37, 529

10.1002/j.1460-2075.1983.tb01442.x

10.1111/j.1529-8817.1988.tb04478.x

10.1007/BF00541643

10.1111/j.0022-3646.1992.00660.x

10.1007/BF00261515

10.1266/jjg.65.367

10.1111/j.0022-3646.1992.00730.x

Medlin L., 1988, The characterization of enzymatically amplified eukaryotic 16S‐like ribosomal RNA sequences for phylogenetic analyses, Proc. Nat. Acad. Sci. U.S.A., 82, 6955

10.1007/BF00351728

10.1111/j.1550-7408.1991.tb01364.x

10.1038/350106a0

Rowan R., 1991, Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae), Mar. Ecol. Prog. Ser., 71, 65, 10.3354/meps071065

Sako Y., 1993, Toxic Phytoplankton Blooms in the Sea, 87

10.1271/bbb.56.692

Sako Y., 1990, Toxic Marine Phytoplankton, 320

Sambrook J., 1989, Molecular Cloning: A Laboratory Manual

Scholin C. A., 1993, Toxic Phytoplankton Blooms in the Sea, 95

10.1111/j.0022-3646.1993.00209.x

10.1111/j.1749-7345.1990.tb00529.x

10.1111/j.0022-3646.1991.00758.x

10.1021/bk-1984-0262.ch008

10.1111/j.1550-7408.1992.tb01467.x

White T. J., 1990, PCR Protocols, 315

10.1111/j.0022-3646.1992.00395.x