REGULATION OF LIGHT HARVESTING IN GREEN PLANTS

Annual Reviews - Tập 47 Số 1 - Trang 655-684 - 1996
Peter Horton1, Alexander V. Ruban1, Robin Walters1
1Department of Molecular Biology and Biotechnology, Robert Hill Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom

Tóm tắt

▪ Abstract  When plants are exposed to light intensities in excess of those that can be utilized in photosynthetic electron transport, nonphotochemical dissipation of excitation energy is induced as a mechanism for photoprotection of photosystem II. The features of this process are reviewed, particularly with respect to the molecular mechanisms involved. It is shown how the dynamic properties of the proteins and pigments of the chlorophyll a/b light-harvesting complexes of photosystem II first enable the level of excitation energy to be sensed via the thylakoid proton gradient and subsequently allow excess energy to be dissipated as heat by formation of a nonphotochemical quencher. The nature of this quencher is discussed, together with a consideration of how the variation in capacity for energy dissipation depends on specific features of the composition of the light-harvesting system. Finally, the prospects for future progress in understanding the regulation of light harvesting are assessed.

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-3040.1995.tb00345.x

10.1071/PP9950075

10.1007/BF00018299

Baker NR, 1994, Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field.

10.1071/PP9950201

Barzda V, 1996, Biophys. Acta.

10.1111/j.1432-1033.1992.tb16640.x

10.1111/j.1432-1033.1993.tb17662.x

10.1038/260366a0

10.1007/BF00033159

10.1007/BF00192536

10.1104/pp.108.4.1479

10.1007/978-3-642-79354-7_2

10.1073/pnas.92.1.175

10.1104/pp.110.4.1405

10.1007/BF00034778

10.1016/S1569-2558(08)60397-5

10.1016/0014-5793(94)00976-7

10.1016/S0005-2728(05)80236-1

10.1104/pp.84.2.218

10.1016/0005-2728(90)90088-L

10.1146/annurev.pp.43.060192.003123

10.1007/BF00620064

10.1071/PP9950249

10.1096/fasebj.10.4.8647339

Färber A, Jahns P. 1995. Xanthophyll cycle pigments in intermittent light grown pea plants. See Ref.74A, in press

10.1007/BF02183041

Frank HA, Cua A, Chynwat V, Young AJ, Zhu Y, Blankenship RE. 1995. Quenching of chlorophyll excited states by carotenoids. See Ref.74A, in press

10.1104/pp.108.2.761

10.1016/0014-5793(94)80513-X

Garab G. 1996. Chirally organised macrodomains in thylakoid membranes. InLight as an Energy Source and Information Carrier in Plant Physiology, ed. RC Jennings, G Zucchelli, F Ghetti, G Colombetti. New York: Plenum. In press

10.1111/j.1751-1097.1991.tb02016.x

10.1016/S0304-4165(89)80016-9

10.1111/j.1751-1097.1993.tb02253.x

10.1007/BF00203592

10.1007/BF00191573

10.1073/pnas.92.6.2273

10.1016/0014-5793(94)00784-5

10.1104/pp.96.2.635

10.1073/pnas.89.5.1899

10.1007/BF02185412

Giuffra E, Cugini D, Croce R, Bassi R. 1995. In vitro reconstitution with pigments of maize photosystem II antenna CP29. See Ref.74A, in press

10.1104/pp.110.1.61

10.1016/0005-2728(94)90041-8

10.1111/j.1751-1097.1995.tb02377.x

10.1104/pp.110.2.471

Horton P. 1995. Nonphotochemical quenching of chlorophyll fluorescence. InLight as an Energy Source and Information Carrier in Plant Physiology, ed. RC Jennings, G Zucchelli, F Ghetti, G Colombetti. New York: Plenum. In press

10.1007/BF00029812

Horton P, Ruban AV. 1994. The role of LHCII in energy quenching. See Ref.3A, pp. 111–28

10.1016/0014-5793(91)80819-O

10.1104/pp.106.2.415

Hurry V. 1995. Nonphotochemical quenching in xanthophyll cycle mutants ofArabidopsisand tobacco deficient in cytochrome b6f and ATPase activity. See Ref.74A, in press

10.1104/pp.108.1.149

10.1111/j.1432-1033.1990.tb19393.x

10.1007/BF01089032

10.1007/BF00206245

Jahns P, 1995, Plant Physiol. Biochem., 33, 683

10.1016/0005-2728(94)90148-1

10.1021/bi00064a002

10.1016/0005-2728(93)90018-B

10.1016/0167-4838(92)90470-X

10.1007/BF02183039

10.1111/j.1365-3040.1993.tb00485.x

Kolubayev T, 1986, Biochim. Biophys. Acta, 376, 105

Korolova OY, Thiele A, Krause GH. 1995. Increased xanthophyll cycle activity as an important factor in acclimation of the photosynthetic apparatus to high-light stress at low temperature. See Ref.74A, in press

Krause GH, 1988, Plant Physiol. Biochem., 26, 445

10.1146/annurev.pp.42.060191.001525

10.1016/0005-2728(92)90097-L

10.1007/BF02187470

10.1104/pp.107.3.873

10.1038/367614a0

10.1104/pp.107.2.565

10.1034/j.1399-3054.1992.850313.x

10.1016/1011-1344(94)07032-6

10.1515/znc-1989-5-611

Mathis P, 1996, Photosynthesis: From Light to Biosphere.

10.2307/2390234

10.1071/PP9950239

10.1071/PP9950231

10.1016/0005-2728(93)90184-H

10.1016/0005-2728(94)90202-X

10.1016/0005-2728(90)90063-A

10.1016/S0005-2728(05)80143-4

10.1016/0005-2728(93)90237-A

Ogren E. 1994. The significance of photoinhibition for photosynthetic productivity. See Ref.3A, pp. 433–47

10.1007/BF00195327

Osmond CB. 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants. See Ref.3A, pp. 1–24

10.1007/BF00239954

Owens TG. 1994. Excitation energy transfer between chlorophylls and carotenoids: a proposed molecular mechanism for nonphotochemical quenching. See Ref.3A, pp. 95–109

Owens TG, Shreve AP, Albrecht AC. 1992. Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: light harvesting and nonphotochemical fluorescence quenching. InResearch in Photosynthesis, ed. N Murata, 4:179–86. Dordrecht: Kluwer

10.1007/BF00047942

10.1016/0168-9452(96)04339-7

10.1007/BF00203636

Pascal AA. 1995. Spinach LHCII: spectral and biochemical changes associated with aggregation and with violaxanthin de-epoxidation. PhD thesis. Univ. Sheffield. 157 pp.

10.1111/j.1751-1097.1995.tb02357.x

Peter GF, 1991, J. Biol. Chem., 266, 16745, 10.1016/S0021-9258(18)55364-3

10.1007/BF02187121

10.1073/pnas.93.4.1492

10.1007/BF00029940

10.1016/0005-2728(90)90062-9

10.1007/BF00049532

10.1016/0014-5793(89)81723-5

10.1007/BF00763223

10.1111/j.1751-1097.1995.tb03964.x

10.1016/0005-2728(92)90061-6

10.1007/BF00019335

10.1104/pp.108.2.721

10.1071/PP9950221

10.1021/bi00007a029

10.1016/1011-1344(93)80188-F

10.1016/0005-2728(92)90062-7

10.1016/0014-5793(92)81089-5

10.1104/pp.102.3.741

10.1016/0005-2728(94)90143-0

10.1021/bi9524878

10.1104/pp.104.1.227

10.1104/pp.107.3.943

10.1016/S0006-3495(88)82973-4

Schonknecht G, Neimanis S, Gerst U, Heber U. 1996. The pH-dependent regulation of photosynthetic electron transport. See Ref.74A, in press

10.1111/j.1751-1097.1990.tb04196.x

Siffel P, Vacha F. 1996. LHC aggregation in intact leaves of tobacco plants stressed by CO2starvation. See Ref.74A, in press

10.1016/S0005-2728(89)80067-2

Spetea C, 1996, Plant Sci.

10.1007/BF00030032

10.1111/j.1432-1033.1994.tb18785.x

10.1071/PP9950183

10.1016/0005-2728(94)90166-X

10.1007/BF00033251

10.1007/BF00016277

Walters RG, Horton P. 1995. DCCD binds to lumen exposed glutamate residues in LHCIIc. See Ref.74A, in press

10.1111/j.1432-1033.1994.01063.x

Webster JI, Young AJ, Horton P. 1996. Carotenoid composition ofDigitalis purpureain relation to non-photochemical quenching. See Ref.74A, in press

10.1016/0005-2728(87)90190-3

10.1098/rstb.1989.0008