RECURRENT AND RECENT SELECTIVE SWEEPS IN THE piRNA PATHWAY

Evolution; international journal of organic evolution - Tập 67 Số 4 - Trang 1081-1090 - 2013
Alfred Simkin1, Alex Wong2, Yu-Ping Poh3, William E. Theurkauf4, Jeffrey D. Jensen5,6,7
1Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
2Department of Biology, Carleton University, Ottawa, Ontario, Canada
3Program in Bioinformatics and Integrative Biology University of Massachusetts Medical School Worcester Massachusetts
4Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
5Program in Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
6Swiss Institute of Bioinformatics (SIB), Switzerland
7École Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Lausanne, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anxolabéhère, 1988, Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements, Mol. Biol. Evol., 5, 252

Brennecke, 2007, Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, 128, 1089, 10.1016/j.cell.2007.01.043

Brower-Toland, 2007, Drosophila PIWI associates with chromatin and interacts directly with HP1a, Genes Dev., 21, 2300, 10.1101/gad.1564307

Castillo, 2011, Molecular evolution under increasing transposable element burden in Drosophila: a speed limit on the evolutionary arms race, BMC Evol. Biol., 11, 258, 10.1186/1471-2148-11-258

Clark, 2007, Evolution of genes and genomes on the Drosophila phylogeny, Nature, 450, 203, 10.1038/nature06341

Daniels, 1990, Evidence for horizontal transmission of the P transposable element between Drosophila species, Genetics, 124, 339, 10.1093/genetics/124.2.339

Díaz-González, 2010, Genomic distribution of retrotransposons 297, 1731, Copia, Mdg1 and Roo in the Drosophila melanogaster species subgroup, Genetica, 138, 579, 10.1007/s10709-009-9430-7

Fay, 2000, Hitchhiking under positive Darwinian selection, Genetics, 155, 1405, 10.1093/genetics/155.3.1405

Fiston-Lavier, 2010, Drosophila melanogaster recombination rate calculator, Gene, 463, 18, 10.1016/j.gene.2010.04.015

Fletcher, 2010, The effect of insertions, deletions and alignment errors on the branch-site test of positive selection, Mol. Biol. Evol., 27, 2257, 10.1093/molbev/msq115

Gunawardane, 2007, A slicer-mediated mechanism for repeat-associated siRNA 5, end formation in Drosophila, Science, 315, 1587, 10.1126/science.1140494

Huisinga, 2009, Small RNA-directed heterochromatin formation in the context of development: what flies might learn from fission yeast. Biochim. Biophys, Acta, 1789, 3

Jensen, 2005, Distinguishing between selective sweeps and demography using DNA polymorphism data, Genetics, 170, 1401, 10.1534/genetics.104.038224

Kazazian, 2004, Mobile elements: drivers of genome evolution, Science, 303, 1626, 10.1126/science.1089670

Khurana, 2011, Adaptation to P element transposon invasion in Drosophila melanogaster, Cell, 147, 1551, 10.1016/j.cell.2011.11.042

Kim, 2002, Detecting a local signature of genetic hitchhiking along a recombining chromosome, Genetics, 160, 765, 10.1093/genetics/160.2.765

Klattenhoff, 2009, The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters, Cell, 138, 1137, 10.1016/j.cell.2009.07.014

Kolaczkowski, 2011, Recurrent adaptation in RNA-interference genes across the Drosophila phylogeny, Mol. Biol. Evol., 28, 1033, 10.1093/molbev/msq284

Le Rouzic, 2005, The first steps of transposable elements invasion: parasitic strategy vs. genetic drift, Genetics, 169, 1033, 10.1534/genetics.104.031211

Li, 2009, Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies, Cell, 137, 509, 10.1016/j.cell.2009.04.027

Librado, 2009, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 25, 1451, 10.1093/bioinformatics/btp187

Lim, 2007, Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 104, 6714, 10.1073/pnas.0701920104

Löytynoja, 2005, An algorithm for progressive multiple alignment of sequences with insertions, Proc. Natl. Acad. Sci. USA, 102, 10557, 10.1073/pnas.0409137102

Malone, 2009, Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary, Cell, 137, 522, 10.1016/j.cell.2009.03.040

McDonald, 1991, Adaptive protein evolution at the Adh locus in Drosophila, Nature, 351, 652, 10.1038/351652a0

Moshkovich, 2010, HP1 recruitment in the absence of argonaute proteins in Drosophila, PLoS Genet., 6, e1000880, 10.1371/journal.pgen.1000880

Nei, 1986, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol., 3, 418

Nielsen, 2005, Genomic scans for selective sweeps using SNP data, Genome Res., 15, 1566, 10.1101/gr.4252305

Obbard, 2006, Natural selection drives extremely rapid evolution in antiviral RNAi genes, Curr. Biol., 16, 580, 10.1016/j.cub.2006.01.065

Obbard, 2009, The evolution of RNAi as a defence against viruses and transposable elements, Philos. Trans. R. Soc. Lond., 364, 99, 10.1098/rstb.2008.0168

Obbard, 2011, Recent and recurrent selective sweeps of the antiviral RNAi gene argonaute-2 in three species of Drosophila, Mol. Biol. Evol., 28, 1043, 10.1093/molbev/msq280

Pal-Bhadra, 2002, RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol, Cell, 9, 315

Pal-Bhadra, 2004, Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery, Science (New York), 303, 669, 10.1126/science.1092653

Pane, 2007, Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Develop, Cell, 12, 851

Przeworski, 2002, The signature of positive selection at randomly chosen loci, Genetics, 160, 1179, 10.1093/genetics/160.3.1179

Rozhkov, 2010, Small RNA-based silencing strategies for transposons in the process of invading Drosophila species, RNA, 16, 1634, 10.1261/rna.2217810

Rozhkov, 2011, Expression of Drosophila virilis retroelements and role of small RNAs in their intrastrain transposition, PloS One, 6, e21883, 10.1371/journal.pone.0021883

Siomi, 2010, How does the royal family of Tudor rule the PIWI-interacting RNA pathway, Genes Develop., 24, 636, 10.1101/gad.1899210

Stark, 2007, Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures, Nature, 450, 219, 10.1038/nature06340

Swanson, 2004, Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection, Genetics, 168, 1457, 10.1534/genetics.104.030478

Tweedie, 2009, FlyBase: enhancing Drosophila Gene Ontology annotations, Nucleic Acids Res., 37, D555, 10.1093/nar/gkn788

Vagin, 2006, A distinct small RNA pathway silences selfish genetic elements in the germline, Science, 313, 320, 10.1126/science.1129333

Vermaak, 2005, Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila, PLoS Genet., 1, 96, 10.1371/journal.pgen.0010009

Wong, 2004, Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites, Genetics, 168, 1041, 10.1534/genetics.104.031153

Yang, 2007, PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol., 24, 1586, 10.1093/molbev/msm088

Yang, 1998, Synonymous and nonsynonymous rate variation in nuclear genes of mammals, J. Mol. Evol., 46, 409, 10.1007/PL00006320

Yang, 2006, Genomewide comparative analysis of the highly abundant transposable element DINE-1 suggests a recent transpositional burst in Drosophila Yakuba, Genetics, 173, 189, 10.1534/genetics.105.051714

Zhang, 2005, Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level, Mol. Biol. Evol., 22, 2472, 10.1093/molbev/msi237