RECENT GEODYNAMO SIMULATIONS AND OBSERVATIONS OF THE GEOMAGNETIC FIELD

Reviews of Geophysics - Tập 40 Số 4 - 2002
Masaru Kono1, Paul Roberts2
1Institute for Study of the Earth’s Interior, Okayama University, Misasa, Tottori-ken, Japan
2Institute of Geophysics and Planetary Physics University of California Los Angeles California USA

Tóm tắt

In 1995, two groups [Kageyama et al., 1995; Glatzmaier and Roberts, 1995a, 1995b] reported results of numerical integrations of fully three‐dimensional, fully nonlinear dynamos. Their papers were precursors of a stream of such models that have focused particularly on the geodynamo. They provide us, in unprecedented detail, with spectacular realizations of interesting geomagnetic field behaviors, such as secular variation and even polarity reversals. The proliferation of models has, however, created some confusion and apparently conflicting results. This can be partly attributed to the different ways in which different groups have modeled the core, normalized their equations, defined their dimensionless parameters, chosen their boundary conditions, and selected their energy sources. This has made it difficult to compare the results of different simulations directly. In this paper, we first try, as far as possible, to overcome this difficulty, so that all reported results can be compared on common ground. We then review the results, emphasizing three major topics: (1) onset and evolution of convection, (2) character of the magnetic field generated, and (3) comparison with the observed geomagnetic field. Although there are large differences in the way that the simulations are defined, the magnetic fields that they generate have some surprising similarities. The fields are dominated by the axial dipole. In some models they are most strongly generated in shear layers near the upper and lower boundaries and near the tangent cylinder, an imaginary surface touching the inner core on its equator. Convection rolls occur within which a type of the α effect distorts the toroidal field lines to create poloidal magnetic field. Some features of the models are found to strongly affect the fields that they produce. In particular, the boundary conditions defining the energy flow (e.g., an inhomogeneous heat flux or distribution of buoyancy sources) are very influential and have been extensively studied. They change the frequency and the mode of magnetic polarity reversals as well as the ratio in strengths of the dipole and nondipole moments. As the ultimate goal of geodynamo simulations is to explain the features of the real geomagnetic field, it is essential that proper comparisons be made between simulation results and observations. It is remarkable that polarity reversals reminiscent of the paleomagnetically observed field reversals have already been simulated by some of the models. Other features such as drift of the field, its secular variation, and statistical properties of Gauss coefficients are discussed in this paper and are compared with observations. These comparisons are rather primitive, not only because self‐consistent dynamo models are still too new and too few but also because many of the observations (and especially the paleomagnetic data) are themselves not yet reliable or decisive enough. The aim of the third part of this paper is therefore more to demonstrate the potential use of simulations than to elucidate the nature of geomagnetic field generation.

Từ khóa


Tài liệu tham khảo

10.1016/0003-4916(58)90054-X

10.1029/RG024i001p00075

10.1098/rsta.2000.0579

10.1038/35011045

10.1098/rsta.1989.0087

Braginsky S. I., 1964, Kinematic models of the Earth's hydromagnetic dynamo, Geomagn. Aeron., 4, 571

Braginsky S. I., 1975, Nearly axially symmetric model of the hydromagnetic dynamo of the Earth, I, Geomagn. Aeron., 15, 149

10.1080/03091929008203556

10.1080/03091928708210113

10.1080/03091929508228992

10.1029/96GL02083

10.1098/rspa.1949.0074

10.1098/rsta.1954.0018

10.1098/rsta.1950.0014

10.1017/S0022112070001921

10.1017/S0022112075002947

10.1146/annurev.fluid.32.1.383

10.1029/94JB03098

10.1029/JB093iB10p11667

Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability

10.1029/98GL00911

10.1046/j.1365-246X.1999.00886.x

10.1016/S0031-9201(01)00275-8

10.1016/0012-821X(89)90053-8

10.1098/rsta.2000.0578

10.1029/JB093iB10p11569

10.1093/mnras/94.1.39

10.1111/j.1365-246X.1970.tb06069.x

10.1017/CBO9780511626333

Dormy E., 2000, Numerical models of the geodynamo and observational constraints, Geochem. Geophys. Geosyst., 1, 10.1029/2000GC000062

10.1098/rspa.1989.0112

10.1016/0031-9201(81)90046-7

10.1103/PhysRev.69.106

10.1016/S0031-9201(01)00278-3

10.1086/190891

10.1086/190743

10.1016/0021-9991(84)90033-0

10.1086/163069

10.1080/03091928508219267

10.1016/0031-9201(95)03049-3

10.1038/377203a0

10.1016/0167-2789(96)00100-5

10.1126/science.274.5294.1887

10.1080/001075197182351

10.1038/44776

10.1103/PhysRevE.60.R5025

10.1016/S0031-9201(99)00101-6

10.1029/1999GL011155

10.1098/rsta.1973.0074

10.1016/0012-821X(96)00121-5

10.1038/20420

10.1038/329233a0

10.1098/rsta.1958.0007

10.1038/354273a0

10.1002/(SICI)1097-0363(20000415)32:7<773::AID-FLD988>3.0.CO;2-P

10.1038/365541a0

10.1007/BF00151283

10.1143/JPSJ.69.1582

10.1098/rsta.2000.0569

10.1080/03091929508228993

10.1111/j.1365-246X.1997.tb06604.x

10.1098/rsta.2000.0565

10.1080/03091920008204124

10.1017/S0022112099007363

10.1017/S0022112099007235

10.1063/1.872287

10.1088/0741-3335/39/5A/009

10.1103/PhysRevE.55.4617

10.1063/1.860668

10.1063/1.871485

10.1016/S0031-9201(98)00152-6

10.1016/S0012-821X(98)00099-5

10.1143/PTPS.130.121

10.1143/JPSJ.67.2950

10.1143/JPSJ.66.2194

10.1063/1.869533

10.1016/0031-9201(72)90083-0

10.1016/S0031-9201(01)00274-6

10.5636/jgg.47.115

Kono M., 1995, The Earth's Central Part: Its Structure and Dynamics, 75

10.1029/1999JB900050

10.1098/rsta.2000.0577

Krause F., 1980, Mean‐Field Magnetohydrodynamics and Dynamo Theory

10.1038/38712

10.1029/GD028p0197

10.1006/jcph.1999.6274

10.1098/rspa.1975.0100

10.1029/1999GL010937

10.1029/1999JB900113

10.1038/351447a0

Langel R. A., 1987, Geomagnetism, 249

10.1029/GL009i004p00250

Larmor J., 1919, How could a rotating body such as the Sun become a magnet, Rep. Br. Assoc. Adv. Sci., 1919, 159

10.1146/annurev.fl.28.010196.000401

10.1016/S0031-9201(97)00034-4

10.1111/j.1365-246X.1974.tb00622.x

10.1126/science.160.3825.259

10.1016/S0031-9201(01)00282-5

10.1186/BF03352231

10.5636/jgg.34.163

10.1016/0031-9201(95)03030-Z

10.1146/annurev.fluid.32.1.1

Merrill R. T., 1996, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle

Moffatt H. K., 1978, Magnetic Field Generation in Electrically Conducting Fields

Néel L., 1949, Theorie du trainage magnetique des ferromagnetique en grain fins avec applications aux terres cuites, Ann. Géophys., 5, 99

10.1063/1.873317

10.1029/2000GL011930

10.1029/1999JB900013

10.1016/S0074-6142(06)80006-9

10.1086/146087

10.1098/rsta.1973.0111

10.1038/366053a0

10.1016/0012-821X(90)90104-6

10.1029/94GL01105

Roberts P. H., 1968, On the thermal instability of a rotating‐fluid sphere containing heat sources, Proc. R. Soc. London, Ser. A, 263, 93

Roberts P. H., 1971, Dynamo theory of geomagnetism, in World Magnetic Survey 1957–1969, 123

10.1098/rsta.2000.0576

10.1103/RevModPhys.72.1081

10.1080/03091920108204131

10.1080/03091920008203719

10.1016/S0031-9201(98)00150-2

10.1080/03091920008203718

10.1016/S0031-9201(98)00142-3

10.1080/03091929808245475

10.1098/rsta.2000.0574

10.1016/S0031-9201(97)00035-6

10.1038/382221a0

10.1080/03091927708242315

10.1080/03091929608208969

10.1515/zna-1966-0813

10.1515/zna-1966-0401

10.1029/JZ071i018p04446

10.1029/93JB03408

10.1126/science.274.5294.1883

10.1111/j.1365-246X.1995.tb05913.x

10.1029/93RG01771

10.1098/rspa.1963.0130

10.1038/366234a0

10.1080/03091929108227780

10.1080/03091929808221146

10.1086/170800

10.1029/90EO00319

10.1111/j.1365-246X.1970.tb06056.x

Yukutake T., 1969, Separation of the Earth's magnetic field into the drifting and the standing parts, Bull. Earthquake Res. Inst. Univ. Tokyo, 47, 65

10.1080/03091928808208877

10.1080/03091928908243466

10.1016/0031-9201(90)90226-N