RBF-FD method for the high dimensional time fractional convection-diffusion equation

Yuanyang Qiao1, Shuying Zhai2,1, Xinlong Feng1
1College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, PR China
2School of Mathematics Science, Huaqiao University, Quanzhou 362021, PR China

Tài liệu tham khảo

Blumen, 1989, Transport aspects in anomalous diffusion: Lévy walks, Phys. Rev. A, 40, 3964, 10.1103/PhysRevA.40.3964 Diethelm, 1999, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, 217 Schumer, 2003, Multiscaling fractional advection-dispersion equations and their solutions, Water Resour. Res., 39, 1022, 10.1029/2001WR001229 Podlubny, 1998 Cui, 2012, Compact alternating direction implicit method for two-dimensional time fractional diffusion equation, J. Comput. Phys., 231, 2621, 10.1016/j.jcp.2011.12.010 Ren, 2013, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232, 456, 10.1016/j.jcp.2012.08.026 Zhai, 2014, An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation, J. Comput. Phys., 269, 138, 10.1016/j.jcp.2014.03.020 Zhai, 2015, High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion, Int. J. Heat Mass Transf., 84, 440, 10.1016/j.ijheatmasstransfer.2015.01.028 Lin, 2007, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533, 10.1016/j.jcp.2007.02.001 Su, 2011, A characteristic difference method for the transient fractional convection-diffusion equations, Appl. Numer. Math., 61, 946, 10.1016/j.apnum.2011.02.007 Li, 2011, Numerical analysis and physical simulations for the time fractional radial diffusion equation, Comput. Math. Appl., 62, 1024, 10.1016/j.camwa.2011.04.020 Wang, 2014, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277, 1, 10.1016/j.jcp.2014.08.012 Gao, 2014, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33, 10.1016/j.jcp.2013.11.017 Alikhanov, 2015, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424, 10.1016/j.jcp.2014.09.031 Zhai, 2013, New high-order compact ADI algorithms for 3d nonlinear time-fractional convection-diffusion equation, Math. Probl. Eng., 2013, 10.1155/2013/246025 Zhai, 2016, A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids, Numer. Heat Transfer, Part B Fundam., 69, 217, 10.1080/10407790.2015.1097101 Ervin, 2006, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22, 558, 10.1002/num.20112 Zhai, 2015, A novel high-order ADI method for 3D fractional convection-diffusion equations, Int. Commun. Heat Mass Transfer, 66, 212, 10.1016/j.icheatmasstransfer.2015.05.028 Zhai, 2015, An efficient algorithm with high accuracy for time-space fractional heat equations, Numer. Heat Transfer, Part B Fundam., 67, 550, 10.1080/10407790.2014.985987 Zhai, 2014, High accuracy spectral method for the space-fractional diffusion equations, J. Math. Stud., 47, 274, 10.4208/jms.v47n3.14.03 Dehghan, 2017, Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis, Appl. Numer. Math., 119, 51, 10.1016/j.apnum.2017.03.009 Franke, 1998, Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput., 93, 73 Ling, 2004, Preconditioning for radial basis functions with domain decomposition methods, Math. Comput. Model., 40, 1413, 10.1016/j.mcm.2005.01.002 Wendl, 2004 Kansa, 1990, Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics. I. surface approximations and partial derivative estimates, Comput. Math. Appl., 19, 127, 10.1016/0898-1221(90)90270-T Kansa, 1990, Multiquadrics- a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19, 147, 10.1016/0898-1221(90)90271-K Cecil, 2004, Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions, J. Comput. Phys., 196, 327, 10.1016/j.jcp.2003.11.010 Bayona, 2010, RBF-FD formulas and convergence properties, J. Comput. Phys., 229, 8281, 10.1016/j.jcp.2010.07.008 Bayona, 2011, Optimal constant shape parameter for multiquadric based RBF-FD method, J. Comput. Phys., 230, 7384, 10.1016/j.jcp.2011.06.005 Fornberg, 2015, Solving PDEs with radial basis functions, Acta Numer., 24, 215, 10.1017/S0962492914000130 Li, 2017, H-adaptive RBF-FD method for the high-dimensional convection-diffusion equation, Int. Commun. Heat Mass Transfer, 10.1016/j.icheatmasstransfer.2017.06.001 Li, 2017 Deparis, 2014, A rescaled localized radial basis function interpolation on non-Cartesian and nonconforming grids, SIAM J. Sci. Comput., 36, A2745, 10.1137/130947179 Zhai, 2016, Investigations on several compact ADI methods for the 2D time fractional diffusion equation, Numer. Heat Transfer, Part B Fundam., 69, 364, 10.1080/10407790.2015.1097231