RBF-FD method for the high dimensional time fractional convection-diffusion equation
Tài liệu tham khảo
Blumen, 1989, Transport aspects in anomalous diffusion: Lévy walks, Phys. Rev. A, 40, 3964, 10.1103/PhysRevA.40.3964
Diethelm, 1999, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, 217
Schumer, 2003, Multiscaling fractional advection-dispersion equations and their solutions, Water Resour. Res., 39, 1022, 10.1029/2001WR001229
Podlubny, 1998
Cui, 2012, Compact alternating direction implicit method for two-dimensional time fractional diffusion equation, J. Comput. Phys., 231, 2621, 10.1016/j.jcp.2011.12.010
Ren, 2013, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232, 456, 10.1016/j.jcp.2012.08.026
Zhai, 2014, An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation, J. Comput. Phys., 269, 138, 10.1016/j.jcp.2014.03.020
Zhai, 2015, High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion, Int. J. Heat Mass Transf., 84, 440, 10.1016/j.ijheatmasstransfer.2015.01.028
Lin, 2007, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533, 10.1016/j.jcp.2007.02.001
Su, 2011, A characteristic difference method for the transient fractional convection-diffusion equations, Appl. Numer. Math., 61, 946, 10.1016/j.apnum.2011.02.007
Li, 2011, Numerical analysis and physical simulations for the time fractional radial diffusion equation, Comput. Math. Appl., 62, 1024, 10.1016/j.camwa.2011.04.020
Wang, 2014, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277, 1, 10.1016/j.jcp.2014.08.012
Gao, 2014, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33, 10.1016/j.jcp.2013.11.017
Alikhanov, 2015, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424, 10.1016/j.jcp.2014.09.031
Zhai, 2013, New high-order compact ADI algorithms for 3d nonlinear time-fractional convection-diffusion equation, Math. Probl. Eng., 2013, 10.1155/2013/246025
Zhai, 2016, A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids, Numer. Heat Transfer, Part B Fundam., 69, 217, 10.1080/10407790.2015.1097101
Ervin, 2006, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22, 558, 10.1002/num.20112
Zhai, 2015, A novel high-order ADI method for 3D fractional convection-diffusion equations, Int. Commun. Heat Mass Transfer, 66, 212, 10.1016/j.icheatmasstransfer.2015.05.028
Zhai, 2015, An efficient algorithm with high accuracy for time-space fractional heat equations, Numer. Heat Transfer, Part B Fundam., 67, 550, 10.1080/10407790.2014.985987
Zhai, 2014, High accuracy spectral method for the space-fractional diffusion equations, J. Math. Stud., 47, 274, 10.4208/jms.v47n3.14.03
Dehghan, 2017, Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis, Appl. Numer. Math., 119, 51, 10.1016/j.apnum.2017.03.009
Franke, 1998, Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput., 93, 73
Ling, 2004, Preconditioning for radial basis functions with domain decomposition methods, Math. Comput. Model., 40, 1413, 10.1016/j.mcm.2005.01.002
Wendl, 2004
Kansa, 1990, Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics. I. surface approximations and partial derivative estimates, Comput. Math. Appl., 19, 127, 10.1016/0898-1221(90)90270-T
Kansa, 1990, Multiquadrics- a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19, 147, 10.1016/0898-1221(90)90271-K
Cecil, 2004, Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions, J. Comput. Phys., 196, 327, 10.1016/j.jcp.2003.11.010
Bayona, 2010, RBF-FD formulas and convergence properties, J. Comput. Phys., 229, 8281, 10.1016/j.jcp.2010.07.008
Bayona, 2011, Optimal constant shape parameter for multiquadric based RBF-FD method, J. Comput. Phys., 230, 7384, 10.1016/j.jcp.2011.06.005
Fornberg, 2015, Solving PDEs with radial basis functions, Acta Numer., 24, 215, 10.1017/S0962492914000130
Li, 2017, H-adaptive RBF-FD method for the high-dimensional convection-diffusion equation, Int. Commun. Heat Mass Transfer, 10.1016/j.icheatmasstransfer.2017.06.001
Li, 2017
Deparis, 2014, A rescaled localized radial basis function interpolation on non-Cartesian and nonconforming grids, SIAM J. Sci. Comput., 36, A2745, 10.1137/130947179
Zhai, 2016, Investigations on several compact ADI methods for the 2D time fractional diffusion equation, Numer. Heat Transfer, Part B Fundam., 69, 364, 10.1080/10407790.2015.1097231