R-VGAL: a sequential variational Bayes algorithm for generalised linear mixed models

Bao Anh Vu1,2, David Gunawan1, Andrew Zammit-Mangion2,1
1School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, Australia
2Securing Antarctica’s Environmental Future, University of Wollongong, Wollongong, Australia

Tóm tắt

Models with random effects, such as generalised linear mixed models (GLMMs), are often used for analysing clustered data. Parameter inference with these models is difficult because of the presence of cluster-specific random effects, which must be integrated out when evaluating the likelihood function. Here, we propose a sequential variational Bayes algorithm, called Recursive Variational Gaussian Approximation for Latent variable models (R-VGAL), for estimating parameters in GLMMs. The R-VGAL algorithm operates on the data sequentially, requires only a single pass through the data, and can provide parameter updates as new data are collected without the need of re-processing the previous data. At each update, the R-VGAL algorithm requires the gradient and Hessian of a “partial” log-likelihood function evaluated at the new observation, which are generally not available in closed form for GLMMs. To circumvent this issue, we propose using an importance-sampling-based approach for estimating the gradient and Hessian via Fisher’s and Louis’ identities. We find that R-VGAL can be unstable when traversing the first few data points, but that this issue can be mitigated by introducing a damping factor in the initial steps of the algorithm. Through illustrations on both simulated and real datasets, we show that R-VGAL provides good approximations to posterior distributions, that it can be made robust through damping, and that it is computationally efficient.

Từ khóa


Tài liệu tham khảo

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org Bates, D., Mächler, M., Bolker, B., Walker, S.: Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015) Betancourt, M., Girolami, M.: Hamiltonian Monte Carlo for hierarchical models. Curr. Trends Bayesian Methodol. Appl. 79(30), 2–4 (2015) Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017) Bonnet, G.: Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire. Annales des Télécommunications 19, 203–220 (1964) Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010: 19th International Conference on Computational Statistics, pp. 177–186. Springer, New York (2010) Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88(421), 9–25 (1993) Broderick, T., Boyd, N., Wibisono, A., Wilson, A.C., Jordan, M.I. (2013). Streaming variational Bayes. In: Proceedings of the 26th International Conference on Neural Information Processing Systems—Volume 2, NIPS’13, pp. 1727–1735. Curran Associates Inc., Red Hook Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer, New York (2005) Crowder, M.J.: Inference about the intraclass correlation coefficient in the beta-binomial ANOVA for proportions. J. R. Stat. Soc. B 41(2), 230–234 (1979) Demidenko, E.: Mixed Models: Theory and Applications with R. Wiley, Hoboken (2013) Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–22 (1977) Faraway, J.J.: Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, 2nd edn. CRC Press, New York (2016) Fitzmaurice, G.M., Laird, N.M.: A likelihood-based method for analysing longitudinal binary responses. Biometrika 80(1), 141–151 (1993) Fong, Y., Rue, H., Wakefield, J.: Bayesian inference for generalized linear mixed models. Biostatistics 11(3), 397–412 (2010) Goldstein, H.: Nonlinear multilevel models, with an application to discrete response data. Biometrika 78(1), 45–51 (1991) Gunawan, D., Kohn, R., Nott, D.: Variational Bayes approximation of factor stochastic volatility models. Int. J. Forecast. 37(4), 1355–1375 (2021) Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14, 1303–1347 (2013) Hosmer, D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, 3rd edn. Wiley, Hoboken (2013) Jansen, M.G.H.: Parameters of the latent distribution in Rasch’s Poisson counts model. In: Fischer, G.H., Laming, D. (eds.) Contributions to Mathematical Psychology, Psychometrics, and Methodology, pp. 319–326. Springer, New York (1994) Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013). arXiv preprint arXiv:1312.6114 Lambert, M., Bonnabel, S., Bach, F.: The recursive variational Gaussian approximation (R-VGA). Stat. Comput. 32(1) (2022) Naylor, J.C., Smith, A.F.: Applications of a method for the efficient computation of posterior distributions. J. R. Stat. Soc. C 31(3), 214–225 (1982) Neal, R.: MCMC Using Hamiltonian dynamics. In: Brooks, S., Gelman, A., Jones, G.J., Meng, X.-L. (eds.) Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton (2011) Nemeth, C., Fearnhead, P., Mihaylova, L.: Particle approximations of the score and observed information matrix for parameter estimation in state-space models with linear computational cost. J. Comput. Graph. Stat. 25(4), 1138–1157 (2016) Ong, V.M.-H., Nott, D.J., Smith, M.S.: Gaussian variational approximation with a factor covariance structure. J. Comput. Graph. Stat. 27(3), 465–478 (2018) Ormerod, J.T., Wand, M.P.: Explaining variational approximations. Am. Stat. 64(2), 140–153 (2010) Price, R.: A useful theorem for nonlinear devices having Gaussian inputs. IRE Trans. Inf. Theory 4(2), 69–72 (1958) R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2022) Stan Development Team: RStan: the R interface to Stan. R package version 2(21), 8 (2023) Tan, L.S., Nott, D.J.: Gaussian variational approximation with sparse precision matrices. Stat. Comput. 28(2018), 259–275 (2018) Thall, P.F., Vail, S.C.: Some covariance models for longitudinal count data with overdispersion. Biometrics 46(3), 657–671 (1990) Tierney, L., Kadane, J.B.: Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81(393), 82–86 (1986) Tokdar, S.T., Kass, R.E.: Importance sampling: a review. WIREs Comput. Stat. 2(1), 54–60 (2010) Tomasetti, N., Forbes, C., Panagiotelis, A.: Updating variational Bayes: Fast sequential posterior inference. Stat. Comput. 32(1) Tran, M.-N., Nott, D.J., Kuk, A.Y., Kohn, R.: Parallel variational Bayes for large datasets with an application to generalized linear mixed models. J. Comput. Graph. Stat. 25(2), 626–646 (2016) Tran, M.-N., Nott, D.J., Kohn, R.: Variational Bayes with intractable likelihood. J. Comput. Graph. Stat. 26(4), 873–882 (2017) Tuerlinckx, F., Rijmen, F., Verbeke, G., De Boeck, P.: Statistical inference in generalized linear mixed models: a review. Br. J. Math. Stat. Psychol. 59(2), 225–255 (2006) Verbeke, G., Molenberghs, G., Verbeke, G.: Linear Mixed Models for Longitudinal Data. Springer, New York (1997) Wakefield, J.: Bayesian and Frequentist Regression Methods. Springer, New York (2013) Zhao, Y., Staudenmayer, J., Coull, B.A., Wand, M.P.: General design Bayesian generalized linear mixed models. Stat. Sci. 21(1), 35–51 (2006)