Réseaux de neurones et électroencéphalogramme : fructueuse association
Tài liệu tham khảo
Reggia, 1988, Self-processing networks and their biomedical implications, Proc. IEEE, 7, 680, 10.1109/5.4457
Leuthausser, 1991, Neural network methods, 545
Aourid, 1992, Introduction aux réseaux de neurones artificiels : quelques applications au traitement de données médicales, Innov. Tech. Biol. Med., 1, 206
Miller, 1992, Review of neural network applications in medical imaging and signal processing, Med. & Biol. Eng. & Comput., 30, 449, 10.1007/BF02457822
Algaver, 1994, The use of artificial neural networks in biomedical technologies : an introduction, Biomed. Instr. & Technol., 28, 315
Itchhaporia, 1996, Artificial neural networks: current status in cardiovascular medicine, J. Am. Coll. Cardiol., 28, 515, 10.1016/0735-1097(96)00174-X
Sabbatini, 1996, Using neural networks for processing biologic signals, Comput. In Brazil, 1, 165
Kück, 1998, Application of artificial neural networks in anaesthesiology, 201
Gevins, 1989, Vol 1
Lopes, 1987
1991
Sadasivan, 1994, Minimization of EOG artefacts from corrupted EEG signals using a neural network approach, Comput. Biol. Med., 24, 441, 10.1016/0010-4825(94)90042-6
Bogacz, 1999, Blinking artefact recognition in EEG signal using artificial neural network
Bartolini, 1995, Recurrent neural network predictors for EEG signal compression, 3395
Battiti, 1995, Neural compression: an integrated application to EEG signals, 210
Bankman, 1992, Feature-based detection of the K-complex wave in the human electroencephalogram using neural networks, IEEE Trans. on Biomed. Eng, 3, 1305, 10.1109/10.184707
Joutsiniemi, 1995, Self-organizing map in recognition of topographic patterns of EEG spectra, IEEE Trans. Biomed. Eng., 4, 1062, 10.1109/10.469372
Ozdamar, 1991, Multilevel neural network system for EEG spike detection, 272
Webber, 1994, Practical detection of epileptiform discharges (Eds.), 91, 194
Mizuno-Matsumoto, 1997, Occurences of electroencephalographic (EEG) patterns that resemble epileptiform discharges in background EEG in epileptic patients, Int. J. Neurosci., 9, 69, 10.3109/00207459708986366
Gabor, 1998, Seizure detection using a self-organizing neural network : validation and comparison with other detection strategies, Electroencephalogr. Clin. Neurophysiol., 107, 27, 10.1016/S0013-4694(98)00043-1
Tarassenko, 1998, Identification of interictal spikes in the EEG using neural network analysis, IEE Proc.-Sci. Meas. Technol., 14, 270, 10.1049/ip-smt:19982328
Arle, 1999, Neural network analysis of preoperative variables and outcome in epilepsy surgery, J. Neurosurg., 90, 998, 10.3171/jns.1999.90.6.0998
Anderer, 1994, Discrimination between demented patients and normals based on topographic EEG slow wave activity : comparison between z statistics, discriminant analysis and artificial neural network classifiers, Electroenceph. Clin. Neurophysiol., 91, 108, 10.1016/0013-4694(94)90032-9
Magdolen, 1996, (1996) Artificial neural networks and data dimensionality reduction mappings for identification of psychiatric disorders in EEG, Medical & Biological Engineering & Computing, 3, 237
Papadourakis, 1996, Use of artificial neural networks for clinical diagnosis, Math. & Comput. in Simulation, 40, 623, 10.1016/0378-4754(96)00011-0
Petrossian, 2001
Winterer, 1998, Analysis of quantitative EEG with artificial neural networks and discriminant analysis — A methodological comparison, Neuropsychobiol., 37, 41, 10.1159/000026475
Veselis, 1991, Use of neural network analysis to classify electroencephalographic patterns against depth of midazolam sedation in intensive care unit patients, J. Clin. Monit., 259, 10.1007/BF01619271
Nayak, 1998, Anesthesia control using midlatency auditory evoked potentials, IEEE Trans. Biomed. Eng., 4, 409, 10.1109/10.664197
Zhang, 1999, Predicting movement during anesthesia by complexity analysis of electroencephalograms, Med. Biol. Eng. & Comput., 37, 327, 10.1007/BF02513308
Jung, 1997, Estimating alterness from EEG power spectrum, IEEE Trans. on Biomed. Eng, 4, 60, 10.1109/10.553713
Sukovic, 1997, A novel neural network approach to estimation of vigilance level from EEG power spectrum, 251
Principe, 1989, Performance and training strategies in feedforward neural networks : an application to sleep scoring, 341
Roberts, 1992, New method of automated sleep quantification, Med. Biol. Eng. Comput., 30, 509, 10.1007/BF02457830
Schaltenbrand, 1993, Neural network model: Application to automatic analysis of human sleep, Comp. and Biomed. Res., 26, 157, 10.1006/cbmr.1993.1010
Robert, 1996, Adult rat vigilance states discrimination by artificial neural networks using a single EEG channel, Physiol. & Behav., 5, 1051, 10.1016/0031-9384(95)02214-7
Baumgart-Schmitt, 1997, On the use of neural network techniques to analyse sleep EEG data. First communication: Application of evolutionary and genetic algorithms to reduce the feature space and to develop classification rules, Neuropsychobiol., 36, 194, 10.1159/000119412
Robert, 1999, Analyse du sommeil par les réseaux de neurones formels : quelques points de repères, Innov. Technol. Biol. Med., 2, 1
Van der Kouwe, 1995, A comparison of linear and non linear techniques for distinguishing phase-dissimilar VEP's, 495
Leistritz, 1999, Identification of hemifield single trial PVEP on the basis of generalized dynamic neural network classifiers, Clin. Neurophysiol., 110, 1978, 10.1016/S1388-2457(99)00155-8
Nishida, 1994, Automatic detection method of P300 waveform in the single sweep records by using a neural network, Med. Eng. Phys., 16, 425, 10.1016/1350-4533(90)90010-6
Fung, 1999, A tracing evoked potential estimator, Med. Biol. Eng. Comput., 37, 218, 10.1007/BF02513290
Rappelsberger, 1994, Classification of EEG coherence maps of cognitive processes : preliminary results, Beitr. Anaesth. Intens. Nottfallmed., 43, 375
Anderson, 1996, Classification of EEG signals from four subjects during five mental tasks, 407
Pfurtscheller, 1996, On-line EEG classification during externally-paced hand movements using a neural network-based classifier, Electroencephalogr. Clin. Neurophysiol., 99, 416, 10.1016/S0013-4694(96)95689-8
Gaetz, 1998, Neural network classifications and correlation analysis of EEG and EMG activity accompanying spontaneous reversals of the Necker cube, Cognitive Brain Research, 6, 335, 10.1016/S0926-6410(97)00038-4
Anderson, 1997, Effects of variations in neural network topology and output averaging on the discrimination of mental tasks from spontaneous electroencephalogram, J. Intell. Systems, 1, 423
Pfurtscheller, 1997, Classification of single EEG trials using machine learning methods and neural networks, 221
de Millan, 1998, Adaptative brain interfaces for physically-disabled people
Peters, 1998, Mining multi-channel EEG for its information content : an ANN-based method for a brain-computer interface, Neural Networks, 11, 1429, 10.1016/S0893-6080(98)00060-4
Gevins, 1988, Differentiating the effects of three benzodiazepines on non-REM sleep EEG spectra, Neuropsychobiol., 19, 108, 10.1159/000118444
Echauz, 1994, Neural network detection of antie-pileptic drugs from single EEG trace, 346
Rumelhart, 1986, Learning internal representations by error propagation, 318
Kohonen, 1988, Self-organization and associative memory, 10.1007/978-3-662-00784-6
Davallo, 1990, 232
Freeman, 1991, Neural networks. Algorithms
Hertz, 1991
Milgram, 1993
Zurada, 1992, 785
Gabor, 1992, Automated interictal EEG spike detection using artificial neural networks, Electroencephalogr. Clin. Neurophysiol., 83, 271, 10.1016/0013-4694(92)90086-W
Reddy, 1992, Neural networks for classification of EEG signals, 653
Jando, 1993, Pattern recognition of the electroencephalogram by artificial neural networks, Electroenceph. Clin. Neurophysiol., vol. 86, 100, 10.1016/0013-4694(93)90082-7
Slater, 1994, Neural network analysis of the P300 event-related potential in multiple sclerosis, Electroenceph. Clin. Neurophysiol., 90, 114, 10.1016/0013-4694(94)90003-5
Mitra, 1996, An MLP-based model for identifying qEEG in depression, Int. J. Biomed. Comput., 43, 179, 10.1016/S0020-7101(96)01203-2
Ko, 1999, Automatic spike detection via artificial neural network using raw EEG data : effects of data preparation and implications in the limitations of online recognition, Clin. Neurophysiol., 110, 1
Mayer, 2001, Imaginary motor movement EEG classification by accumulative-autocorrelationpulse, Electromyogr. Clin. Neurophysiol., 41, 159
Sharma, 1997, Design of a recognition system to predict movement during anesthesia, IEEE Trans. Biomed. Eng., 4, 505, 10.1109/10.581946
Carpenter, 1988, The ART of adaptive pattern recognition by a self-organizing neural network, IEEE Computer, 2, 77, 10.1109/2.33
1987, Vol 1 et 2
Ozdamar, 1992, Detection of transient EEG patterns with adaptative unsupervised neural networks, 192
Broomhead, 1988, Multivariate functional interpolation and adaptive networks, Complex Systems, 2, 321
Krkic, 1996, EEG-based assessment of anaesthetic depth using neural networks, 100
Kohlmorgen, 1997, Analysis of wake/sleep EEG with competing experts, 1077
Ko, 1998, An EEG spike detection algorithm using artificial neural network with multi-channel correlation, 2070
Heuser, 1996, Classification of human brain waves using self-organizing maps, 37
James, 1999, Detection of epileptiform discharges in the EEG by a hybrid system comprising mimetic, self-organized artificial neural network, and fuzzy logic stages, Clin. Neurophysiol., 110, 2049, 10.1016/S1388-2457(99)00168-6
Nahm, 1999, Concept for an intelligent anaesthesia EEG monitor, Med. Inform., 2, 1
Hopfield, 1982, Neural systems and physical systems with emergent selective computational abilities, 2554
Hopfield, 1984, Neurons with graded response have collective computational properties like those of two-state neurons, 3088
Laskaris, 1997, Robust moving averages with Hopfield neural network implementation for monitoring evoked potential signals, Electroencephalogr. Clin. Neurophysiol., 104, 151, 10.1016/S0168-5597(97)96681-8
Lin, 1993, Conscious mental tasks and their EEG signals, Med. & Biol. Eng. & Comput., 31, 421, 10.1007/BF02446699
Jando, 1993, Pattern recognition of the electroencephalogram by artificial neural networks, Electroenceph. Clin. Neurophysiol., 86, 100, 10.1016/0013-4694(93)90082-7
Pradhan, 1996, Detection of seizure activity in EEG by an artificial neural network : a preliminary study, Comput. & Biomed. Res., 29, 303, 10.1006/cbmr.1996.0022
Anderson, 1995, Determining mental state from EEG signals using parallel implementations of neural networks, Scientific Programming Special Issue on Applications Analysis, 4, 171, 10.1155/1995/603414
Varsta, 1997, Epileptic activity detection in EEG with neural networks, 179
Masic, 1996, Neural network-based predictions of hand movements using EEG data, Periodicum Biologorum, 9, 77
Pfurtscheller, 1992, Sleep classification in infants based on artificial neural networks, Biomed. Technik., 37, 122, 10.1515/bmte.1992.37.6.122
Pritchard, 1994, EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures, Electroencephalogr. Clin. Neurophysiol., 91, 118, 10.1016/0013-4694(94)90033-7
Rechschaffen, 1968
Mamelak, 1991, Automated staging in cats using neural networks, Electroenceph. Clin. Neurophysiol., 79, 52, 10.1016/0013-4694(91)90156-X
Principe, 1993, Information processing models for sleep staging, Experts Systems with Applications, 6, 399, 10.1016/0957-4174(93)90032-2
Kubat, 1994, AI-based approach to automatic sleep classification, Biol. Cybern., 70, 443, 10.1007/BF00203237
Tuulik, 1997, Neural network method to determine the vigilance levels of the central nervous system, related to occupational chronic chemical stress, Technol. Health Care, 5, 243, 10.3233/THC-1997-5307
Gabor, 1996, Automated seizure detection using a self-organizing neural network, Electroencephalogr. Clin. Neurophysiol., 99, 257, 10.1016/0013-4694(96)96001-0
Veselis, 1993, Analytical methods to differentiate similar electroencephalographic spectra : neural network and discriminant analysis, J. Clin. Monit., 9, 257, 10.1007/BF02886696
Webber, 1996, An approach to seizure detection using an artificial neural network (ANN), Electroenceph. Clin. Neurophysiol., 98, 250, 10.1016/0013-4694(95)00277-4
Wu, 1993, A neural network design for event-related potential diagnosis, Comput. Biol. Med., 2, 251, 10.1016/0010-4825(93)90024-U
Robert, 1997, Comparison between conventional and neural network classifiers for rat sleep-wake stage discrimination, Neuropsychobiol., 35, 221, 10.1159/000119348
Koprinska, 1996, Sleep classification in infants by decision tree-based neural networks, Art. Intell. Med., 8, 387, 10.1016/0933-3657(95)00043-7
Si, 1998, An expert system for EEG monitoring in the pediatric intensive care unit, Electroencephalogr. Clin. Neurophysiol., 106, 488, 10.1016/S0013-4694(97)00154-5
Bruha, 1990, Use of multiplayer perceptron for recognition of evoked potentials, Int. J. Pattern Recog. & Artif. Intell., 705, 10.1142/S0218001490000393
Grözinger, 1995, Automatic recognition of rapid eye movement (REM) sleep by artificial neural networks, J. Sleep Res., 4, 86, 10.1111/j.1365-2869.1995.tb00156.x
Kalayaci, 1995, Wavelet preprocessing for automated neural network detection of EEG spikes, IEEE Eng. Med. & Biol., 160, 10.1109/51.376754
Polikar, 1997, Multiresolution wavelet analysis of ERPs for the detection of Alzheimer's disease, 1301
Muthuswamy, 1999, The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia, IEEE Trans. on Biomed. Engineering, 4, 291, 10.1109/10.748982
Riddington, 1996, Intelligent enhancement and interpretation of EEG signals, 11/1
Schwarger, 2000, On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology, Statist. Med., 19, 541, 10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V
Sargent, 2001, Comparison of artificial neural networks with other statistical approaches, Cancer, 91, 1636, 10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D