Quiver Varieties and a Noncommutative P2

Wiley - Tập 134 - Trang 283-318 - 2002
V. Baranovsky1, V. Ginzburg2, A. Kuznetsov3
1Caltech, Mathematics 253-37, Caltech, Pasadena, U.S.A.
2Department of Mathematics, University of Chicago, Chicago, U.S.A.
3Institute for Information Transmission Problems, Russia

Tóm tắt

To any finite group $$\Gamma \subset SL_2 (\mathbb{C})$$ and each element τ in the center of the group algebra of Γ, we associate a category, $$\mathcal{C}oh(\mathbb{P}_{\Gamma ,\tau }^2 ,\mathbb{P}^1 )$$ It is defined as a suitable quotient of the category of graded modules over (a graded version of) the deformed preprojective algebra introduced by Crawley-Boevey and Holland. The category $$\mathcal{C}oh(\mathbb{P}_{\Gamma ,\tau }^2 ,\mathbb{P}^1 )$$ should be thought of as the category of coherent sheaves on a `noncommutative projective space', $$\mathbb{P}_{\Gamma ,\tau }^2 $$ equipped with a framing at $$\mathbb{P}^1 $$ , the line at infinity. Our first result establishes an isomorphism between the moduli space of torsion free objects of $$\mathcal{C}oh(\mathbb{P}_{\Gamma ,\tau }^2 ,\mathbb{P}^1 )$$ and the Nakajima quiver variety arising from Γ via the McKay correspondence. We apply the above isomorphism to deduce a generalization of the Crawley-Boevey and Holland conjecture, saying that the moduli space of `rank 1' projective modules over the deformed preprojective algebra is isomorphic to a particular quiver variety. This reduces, for $$\Gamma \;{\text{ = }}\;{\text{\{ 1\} }}$$ , to the recently obtained parametrisation of the isomorphism classes of right ideals in the first Weyl algebra, A1, by points of the Calogero–Moser space, due to Cannings and Holland and Berest and Wilson. Our approach is algebraic and is based on a monadic description of torsion free sheaves on $$\mathbb{P}_{\Gamma ,\tau }^2 $$ . It is totally different from the one used by Berest and Wilson, involving τ-functions.

Tài liệu tham khảo

Artin, M. and Zhang, J.: Noncommutative projective schemes, Adv. Math. 109 (1994), 228–287. Berest, Yu. and Wilson, G.: Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), 127–147. Belinson, A., Ginzburg, V. and Soergel, W.: Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527. Bocklandt, R. and Le Bruyn, L.: Neklace Lie algebras and noncommutative symplectic geometry, Preprint math.AG/0010030. Bourbaki, N.: Groupes et algeěbres de Lie, Chapitre VI, Hermann, Paris, 1968. Cannings, R. C. and Holland, M. P.: Right ideals of rings of differential operators, J. Algebra 167 (1994), 116–141. Crawley-Boevey, W. and Holland, M.P.: Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998), 605–635. Crawley-Boevey, W.: Geometry of the moment map for representations of quivers, Compositio Math. 126 (2001), 257–293. Drinfeld, V. G.: On quadratic commutation relations in the quiasiclassical sense, Selecta Math. Soviet. 11 (1992), 317–326. Guo, J. Y., Martí´nez-Villa, R. and Takane, M.: Koszul generalized Auslander regular algebras, In: Algebras and modules, II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, 1998, pp. 263–283. Huishi, L.: Global dimension of graded local rings, Comm. Algebra 24 (1996), 2399–2405. Kapustin, A., Kuznetsov, A. and Orlov, D.: Noncommutative instantons and twistor transform, Preprint hep-th/0002193. Kazhdan,D.,Kostant,B.and Sternberg,S.:Hamiltonian group actions and dynamical systems of Calogero type,Comm.Pure Appl.Math.31 (1978),481–507. Kapranov, M. and Vasserot, E.: Kleinian singularities, derived categories and Hall algebras, Math. Ann. 316 (2000), 565–576. Kronheimer, P.: The construction of ALEspaces as hyper-Ka¨hler quotients, J. Differential Geom. 29 (1989), 665–683. Kronheimer, P. and Nakajima, H.: Yang-Mills instantons on ALEgravitational instantons, Math. Ann. 288 (1990), 263–307. Manin, Yu.: Quantum groups and non-commutative geometry, Publ. du Centre de Recherches Mathem., Montreal, 1988. McConnell, J. C. and Robson, J. C.: Non-commutative Noetherian Rings, with the cooperation of L. W. Small, Pure Appl. Math., Wiley-Interscience, New York, 1987. Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces, Univ. Lecture Series 18, Amer. Math. Soc., Providence, 1999. Nakajima, H.: Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515–560. Okonek, C., Schneider, M. and Spindler, H.: Vector Bundles on Complex Projective Spaces, Progr. in Math. 3, Birkha¨user, Boston, 1980. Stafford, J.T. and Van den Bergh, M.: Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. 38 (2001), 171–216. Quillen, D.: Higher algebraic K-theory: I, Lecture Notes in Math. 341, Springer, New York, 1973, pp. 85–147. Reid, M.: La correspondance de McKay, Se´minaire Bourbaki, 867 (1999), math.AG/ 9911165. Rudakov, A.: Rigid and exceptional vector bundles and sheaves on a Fano variety, In: Proc. ICM (Zurich, 1994 ), Birkhauser, Basel, 1995, pp. 697–705. Varagnolo, M. and Vasserot, E.: On the K-theory of the cyclic quiver variety, Internat. Math. Res. Notices 18 (1999), 1005–1028. Verevkin, A.B.: On a noncommutative analogue of the category of coherent sheaves on a projective scheme, English transl.: Amer. Math. Soc. Transl. Ser. (2) 151, Amer. Math. Soc., Providence, 1992, pp. 41–53. Wilson, G.: Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), 1–41. Yekutieli, A. and Zhang, J.: Serre duality for noncommutative prejective schemes, Proc. Amer. Math. Soc. 125 (1997), 697–707.