Quinpi: Integrating Conservation Laws with CWENO Implicit Methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbate, E., Iollo, A., Puppo, G.: An all-speed relaxation scheme for gases and compressible materials. J. Comput. Phys. 351, 1–24 (2017)
Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)
Arbogast, T., Huang, C., Zhao, X., King, D.N.: A third order, implicit, finite volume, adaptive Runge-Kutta WENO scheme for advection-diffusion equations. Comput. Methods Appl. Mech. Eng. (2020). https://doi.org/10.1016/j.cma.2020.113155
Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)
Berger, M.J., LeVeque, R.J.: Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35(6), 2298–2316 (1998). https://doi.org/10.1137/S0036142997315974
Boscarino, S., Cho, S., Russo, G., Yun, S.: High order conservative semi-Lagrangian scheme for the BGK model of the Boltzmann equation. Commun. Comput. Phys. 29, 1–56 (2021)
Boscarino, S., Russo, G., Scandurra, L.: All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics. J. Sci. Comput. 77(2), 850–884 (2018)
Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27, 1071–1091 (2005)
Castro-Dìaz, M.J., Semplice, M.: Third- and fourth-order well-balanced schemes for the shallow water equations based on the CWENO reconstruction. Int. J. Numer. Meth. Fluid 89(8), 304–325 (2019). https://doi.org/10.1002/fld.4700
Cravero, I., Puppo, G., Semplice, M., Visconti, G.: CWENO: uniformly accurate reconstructions for balance laws. Math. Comput. 87(312), 1689–1719 (2018). https://doi.org/10.1090/mcom/3273
Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67, 1219–1246 (2016). https://doi.org/10.1007/s10915-015-0123-3
Cravero, I., Semplice, M., Visconti, G.: Optimal definition of the nonlinear weights in multidimensional central WENOZ reconstructions. SIAM J. Numer. Anal. 57(5), 2328–2358 (2019). https://doi.org/10.1007/s10915-015-0123-3
Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10(1), 1–31 (2011)
Dellacherie, S.: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229(4), 978–1016 (2010)
Dimarco, G., Loubère, R., Vignal, M.H.: Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit. SIAM J. Sci. Comput. 39(5), A2099–A2128 (2017)
Dimarco, G., Loubère, R., Michel-Dansac, V., Vignal, M.H.: Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime. J. Comput. Phys. 372, 178–201 (2018)
Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014). https://doi.org/10.1017/S0962492914000063
Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008). https://doi.org/10.1016/j.jcp.2008.05.025
Dumbser, M., Boscheri, W., Semplice, M., Russo, G.: Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructered meshes. SIAM J. Sci. Comput. 39(6), A2564–A2591 (2017). https://doi.org/10.1137/17M1111036
Duraisamy, K., Baeder, D.: Implicit scheme for hyperbolic conservation laws using non-oscillatory reconstruction in space and time. SIAM J. Sci. Comput. 29, 2607–2620 (2007)
Duraisamy, K., Baeder, D., Liu, J.: Concepts and application of time-limiters to high resolution schemes. J. Sci. Comput. 19, 139–162 (2003)
Forth, S.A.: A second order accurate space-time limited BDF scheme for the linear advection equation. In: Godunov Methods, pp. 335–342. Springer, Berlin (2001)
Gottlieb, S., Mullen, J.S., Ruuth, S.J.: A fifth order flux implicit WENO method. J. Sci. Comput. 27, 271–287 (2006). https://doi.org/10.1007/s10915-005-9034-z
Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43, 73–85 (2001)
Groppi, M., Russo, G., Stracquadanio, G.: High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14, 389–414 (2016)
Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983). https://doi.org/10.1016/0021-9991(83)90136-5
Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)
Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)
Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235–276 (1995)
Ketcheson, D.I., MacDonald, C.B., Ruuth, S.J.: Spatially partitioned embedded Runge-Kutta methods. SIAM J. Numer. Anal. 51(5), 2887–2910 (2013). https://doi.org/10.1137/130906258
Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014). https://doi.org/10.1137/130947568
LeVeque, R.: Finite volume methods for hyperbolic problems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2004)
Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31, 334–368 (2008)
Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000). https://doi.org/10.1137/S1064827599359461
Nørsett, S.P., Wanner, G.: Perturbed collocation and Runge-Kutta methods. Numer. Math. 38, 193–208 (1981). https://doi.org/10.1007/BF01397089
Pieraccini, S., Puppo, G.: Microscopically implicit-macroscopically explicit schemes for the BGK equation. J. Comput. Phys. 231, 299–327 (2012)
Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016). https://doi.org/10.1007/s10915-015-0038-z
Semplice, M., Visconti, G.: Efficient implementation of adaptive order reconstructions. J. Sci. Comput. 83, 6 (2020). https://doi.org/10.1007/s10915-020-01156-6
Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997), Lecture Notes in Math., vol. 1697, pp. 325–432. Springer, Berlin (1998)
Sweby, P.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984). https://doi.org/10.1137/0721062
Tavelli, M., Dumbser, M.: A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341–376 (2017). https://doi.org/10.1016/j.jcp.2017.03.030