Questions of flavor physics and neutrino mass from a flipped hypercharge

Duong Van Loi1, P. Dong1, N. T. Duy1, Nguyen Huy Thao1
1Phenikaa Institute for Advanced Study and Faculty of Fundamental Sciences, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam

Tóm tắt

The flavor structure of quarks and leptons is not yet fully understood, but it hints a more fundamental theory of nonuniversal generations. We therefore propose a simple extension of the Standard Model by flipping (i.e., enlarging) the hypercharge U(1)Y to U(1)XU(1)N for which both X and N depend on generations of both quark and lepton. By anomaly cancellation, this extension not only explains the existence of just three fermion generations as observed but also requires the presence of a right-handed neutrino per generation, which motivates seesaw neutrino mass generation. Furthermore, in its minimal version with a scalar doublet and two scalar singlets, the model naturally generates the measured fermion-mixing matrices while it successfully accommodates several flavor anomalies observed in the neutral meson mixings, B-meson decays, lepton-flavor-violating processes of charged leptons, as well as satisfying constraints from particle colliders. Published by the American Physical Society 2024

Từ khóa


Tài liệu tham khảo

10.1093/ptep/ptac097

10.1016/0029-5582(61)90469-2

10.1103/PhysRevLett.19.1264

10.1142/9789812795915_0034

10.1103/PhysRevD.2.1285

10.1103/RevModPhys.88.030501

10.1103/RevModPhys.88.030502

10.3390/universe7120459

10.1103/PhysRevD.107.052008

10.1103/PhysRevD.105.012010

10.1140/epjc/s2006-02582-x

10.1103/PhysRevLett.104.021802

10.1140/epjc/s10052-016-4271-x

10.1103/PhysRevLett.82.49

10.1007/JHEP08(2023)020

10.1007/JHEP11(2023)100

10.1103/PhysRevD.22.738

10.1103/PhysRevD.28.540

10.1103/PhysRevD.46.410

10.1103/PhysRevLett.69.2889

10.1103/PhysRevD.50.R34

10.1103/PhysRevD.73.035004

10.1016/j.physletb.2006.06.077

10.1016/j.nuclphysb.2007.11.019

10.1007/JHEP12(2020)029

10.1140/epjc/s10052-023-11365-6

10.1140/epjc/s10052-023-12198-z

10.1103/PhysRevD.108.095018

10.1016/j.physletb.2009.03.065

10.1103/PhysRevD.108.115022

10.1140/epjc/s2005-02314-x

10.1103/PhysRevLett.129.171801

10.1103/PhysRevLett.53.1802

10.1103/PhysRevLett.51.1945

10.1103/PhysRevD.50.3433

10.1140/epjc/s2005-02169-1

10.1140/epjc/s10052-022-10536-1

10.1007/s12210-023-01137-5

10.1007/JHEP06(2020)175

10.1016/j.nuclphysb.2006.12.012

10.1088/1126-6708/2007/03/008

10.1103/PhysRevLett.120.011801

10.1103/RevModPhys.68.1125

10.1016/0550-3213(96)00390-2

10.1103/PhysRevD.62.013006

10.1007/JHEP07(2020)177

10.1007/JHEP10(2019)232

10.1140/epjc/s10052-016-4274-7

10.1103/PhysRevD.71.114013

10.1103/PhysRevD.86.014027

10.1016/S0550-3213(01)00347-9

10.1007/JHEP08(2011)124

10.1007/JHEP08(2021)050

10.1007/JHEP03(2016)010

10.1103/PhysRevD.98.113002

10.1007/JHEP06(2021)068

10.1103/PhysRevD.105.015026

10.1103/RevModPhys.73.151

10.1103/PhysRevD.66.096002

10.1103/PhysRevD.80.013002

10.1103/PhysRevC.35.2212

10.1103/PhysRevLett.131.161802

10.1038/s41586-018-0599-8

10.1103/PhysRevD.80.052008

10.1103/PhysRevD.70.093009

10.1016/j.physrep.2005.12.006

10.1016/j.physrep.2013.07.004

10.1016/j.physletb.2019.07.016

10.1007/JHEP03(2020)145

10.1007/JHEP07(2021)208

10.1103/PhysRevD.83.075012

10.1140/epjc/s10052-009-1072-5